1
|
Cvjetinovic J, Merdalimova AA, Kirsanova MA, Somov PA, Nozdriukhin DV, Salimon AI, Korsunsky AM, Gorin DA. A SERS platform based on diatomite modified by gold nanoparticles using a combination of layer-by-layer assembly and a freezing-induced loading method. Phys Chem Chem Phys 2022; 24:8901-8912. [PMID: 35363241 DOI: 10.1039/d2cp00647b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Anastasiia A Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Maria A Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Pavel A Somov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Daniil V Nozdriukhin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Alexey I Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | | | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| |
Collapse
|
2
|
Choi D, Heo J, Aviles Milan J, Oreffo ROC, Dawson JI, Hong J, Kim YH. Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111440. [PMID: 33255033 DOI: 10.1016/j.msec.2020.111440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Functionalized scaffolds hold promise for stem cell therapy by controlling stem cell fate and differentiation potential. Here, we have examined the potential of a 2-dimensional (2D) scaffold to stimulate bone regeneration. Solubilized extracellular matrix (ECM) from human bone tissue contains native extracellular cues for human skeletal cells that facilitate osteogenic differentiation. However, human bone ECM displays limited mechanical strength and degradation stability under physiological conditions, necessitating modification of the physical properties of ECM before it can be considered for tissue engineering applications. To increase the mechanical stability of ECM, we explored the potential of synthetic Laponite® (LAP) clay as a counter material to prepare a 2D scaffold using Layer-by-Layer (LbL) self-assembly. The LAP and ECM multilayer nanofilms (ECM/LAP film) were successfully generated through electrostatic and protein-clay interactions. Furthermore, to enhance the mechanical properties of the ECM/LAP film, application of a NaCl solution wash step, instead of deionized water following LAP deposition resulted in the generation of stable, multi-stacked LAP layers which displayed enhanced mechanical properties able to sustain human skeletal progenitor cell growth. The ECM/LAP films were not cytotoxic and, critically, showed enhanced osteogenic differentiation potential as a consequence of the synergistic effects of ECM and LAP. In summary, we demonstrate the fabrication of a novel ECM/LAP nanofilm layer material with potential application in hard tissue engineering.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juan Aviles Milan
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, SO16 6YD, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, SO16 6YD, United Kingdom
| | - Jonathan I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, SO16 6YD, United Kingdom.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
3
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
4
|
Noskov RE, Zanishevskaya AA, Shuvalov AA, German SV, Inozemtseva OA, Kochergin TP, Lazareva EN, Tuchin VV, Ginzburg P, Skibina JS, Gorin DA. Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. OPTICS EXPRESS 2019; 27:9868-9878. [PMID: 31045135 DOI: 10.1364/oe.27.009868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Optical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs. Incorporation of magnetite nanoparticles into polyelectrolyte layers renders HC-MFs visible for MRI and induces the red-shift in their transmission spectra. Specifically, the transmission shifts up to 60 nm have been revealed for the several-layers composite coating, along with the high-quality contrast of HC-MFs in MRI scans. Our results shed light on marrying fiber-based endoscopy with MRI to open novel possibilities for minimally invasive clinical diagnostics and surgical procedures in vivo.
Collapse
|
5
|
Mosiniewicz-Szablewska E, Clavijo AR, Castilho APOR, Paterno LG, Pereira-da-Silva MA, Więckowski J, Soler MAG, Morais PC. Magnetic studies of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms. Phys Chem Chem Phys 2018; 20:26696-26709. [DOI: 10.1039/c8cp05404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the substrate surface effects on the magnetic behavior of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms is evidenced.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria A. G. Soler
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
| | - Paulo C. Morais
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
- Universidade Católica de Brasília
| |
Collapse
|
6
|
Investigation of polymer dynamics in chitosan-maghemite nanocomposites: a potential green superparamagnetic material. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0998-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Mei Z, Dhanale A, Gangaharan A, Sardar DK, Tang L. Water dispersion of magnetic nanoparticles with selective Biofunctionality for enhanced plasmonic biosensing. Talanta 2016; 151:23-29. [PMID: 26946006 DOI: 10.1016/j.talanta.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) are widely used in biosensing, bioimaging, and drug delivery. However, high quality superparamagnetic nanoparticles with uniform size were usually synthesized by thermal decomposition using organic solvents. To be suitable for biomedical applications, a facile and efficient water dispersion of iron oxide MNPs from solvent using an innovative agent, sodium oleate (NaOL) was described. The monodispersed MNPs (4 and 15nm respectively) after transfer was biocompatible and stable at a broad temperature range (4-50°C) over months. More importantly, the NaOL coating allows for surface modification with selective functionality, rendering the aqueous MNPs highly customizable for biofunctionalization. Little effect on the superparamagnetism was observed after the water dispersion. To further evaluate its practical application in biosensing, custom MNPs were prepared for specific cardiac troponin I (cTnI) detection for myocardial infarction diagnosis. Specifically, gold nanorod (GNR) biochip was probed by the MNP-captured cTnI target analyte at varying concentrations. The signal transduction of the GNR sensor is based on the localized surface plasmon resonance (LSPR). The application of the MNPs resulted in a significant enhancement of the plasmonic response of the GNRs. As such, the MNP-mediated LSPR biosenisng showed a three times lower sensitivity as compared to the direct cTnI binding without functional MNPs. Computer simulation further elucidated that the enhancement was distance dependent between the MNP and the surface of the nanorod, which corroborated with experimental results.
Collapse
Affiliation(s)
- Zhong Mei
- Department of Biomedical Engineering, University of Texas at San Antonio, TX 78249, USA
| | - Ashish Dhanale
- Department of Biomedical Engineering, University of Texas at San Antonio, TX 78249, USA
| | - Ajithkumar Gangaharan
- Department of Physics & Astronomy, University of Texas at San Antonio, TX 78249, USA
| | - Dhiraj Kumar Sardar
- Department of Physics & Astronomy, University of Texas at San Antonio, TX 78249, USA
| | - Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio, TX 78249, USA.
| |
Collapse
|
8
|
Inozemtseva OA, Salkovskiy YE, Severyukhina AN, Vidyasheva IV, Petrova NV, Metwally HA, Stetciura IY, Gorin DA. Electrospinning of functional materials for biomedicine and tissue engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Manikandan A, Vijaya JJ, Mary JA, Kennedy LJ, Dinesh A. Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.09.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Ridi F, Bonini M, Baglioni P. Magneto-responsive nanocomposites: preparation and integration of magnetic nanoparticles into films, capsules, and gels. Adv Colloid Interface Sci 2014; 207:3-13. [PMID: 24139510 DOI: 10.1016/j.cis.2013.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
This review reports on the latest developments in the field of magnetic nanocomposites, with a special focus on the potentials introduced by the incorporation of magnetic nanoparticles into polymer and supramolecular matrices. The general notions and the state of the art of nanocomposite materials are summarized and the results reported in the literature over the last decade on magnetically responsive films, capsules and gels are reviewed. The most promising concepts that have inspired the design of magneto-responsive nanocomposites are illustrated through remarkable examples where the integration of magnetic nanoparticles into organic architectures has successfully taken to the development of responsive multifunctional materials.
Collapse
|
11
|
German SV, Inozemtseva OA, Markin AV, Metvalli K, Khomutov GB, Gorin DA. Synthesis of magnetite hydrosols in inert atmosphere. COLLOID JOURNAL 2013. [DOI: 10.1134/s1061933x13040042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Menard MC, Takeuchi KJ, Marschilok AC, Takeuchi ES. Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy. Phys Chem Chem Phys 2013; 15:18539-48. [DOI: 10.1039/c3cp52870g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Alcantara GB, Paterno LG, Fonseca FJ, Pereira-da-Silva MA, Morais PC, Soler MAG. Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films. Phys Chem Chem Phys 2013; 15:19853-61. [DOI: 10.1039/c3cp53602e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bao Y, Vigderman L, Zubarev ER, Jiang C. Robust multilayer thin films containing cationic thiol-functionalized gold nanorods for tunable plasmonic properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:923-30. [PMID: 22103248 DOI: 10.1021/la203993m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanorods have great potential in a variety of applications because of their unique physical properties. In this article, we present the layer-by-layer (LbL) assembly of thin films containing positively charged gold nanorods that are covalently functionalized by cationic thiol molecules. The cationic gold nanorods are uniformly distributed in ultrathin nanocomposite LbL thin films. We studied the collective surface plasmon resonance coupling in the LbL films via UV-visible spectroscopy and evaluated their application in the surface-enhanced Raman scattering detection of rhodamine 6G probe molecules. Furthermore, we successfully manufactured freestanding nanoscale thin films containing multilayers of gold nanorods with a total thickness of less than 50 nm. The surface morphology and their optical and mechanical properties were systematically investigated, and the polycationic gold nanorods were found to play an important role in manipulating the properties of the nanocomposite thin films. Our findings reveal that such nanorods are excellent building blocks for constructing functional LbL films with tunable plasmonic behavior and robust mechanical properties.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | | | | | | |
Collapse
|
15
|
Khomutov GB. Biomimetic nanosystems and novel composite nanobiomaterials. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911050083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Wu A, Paunesku T, Zhang Z, Vogt S, Lai B, Maser J, Yaghmai V, Li D, Omary RA, Woloschak GE. A Multimodal Nanocomposite for Biomedical Imaging. AIP CONFERENCE PROCEEDINGS 2011; 1365:379. [PMID: 24817775 PMCID: PMC4012782 DOI: 10.1063/1.3625382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by X-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell.
Collapse
Affiliation(s)
- Aiguo Wu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 519 Zhuangshi Rd. Zhenhai District, Ningbo City, Zheijang Province, 315201 P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Stefan Vogt
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Barry Lai
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Jörg Maser
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Debiao Li
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Reed A Omary
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|