1
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
2
|
Contributions of vibrational spectroscopy to virology: A review. CLINICAL SPECTROSCOPY 2022; 4:100022. [PMCID: PMC9093054 DOI: 10.1016/j.clispe.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970 s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review considers the history of the application of vibrational spectroscopic techniques to the characterisation of the morphology and chemical compositions of viruses, their attachment to, uptake by and replication in cells, and their potential for the detection of viruses in population screening, and in infection response monitoring applications. Particular consideration is devoted to recent efforts in the detection of severe acute respiratory syndrome coronavirus 2, and monitoring COVID-19.
Collapse
|
3
|
Lopez-Gonzalez U, Casey A, Byrne HJ. Biochemical impact of solar radiation exposure on human keratinocytes monitored by Raman spectroscopy; effects of cell culture environment. JOURNAL OF BIOPHOTONICS 2021; 14:e202100058. [PMID: 33871950 DOI: 10.1002/jbio.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Understanding and amelioration of the effects of solar radiation exposure are critical in preventing the occurrence of skin cancer. Towards this end, many studies have been conducted in 2D cell culture models under simplified and unrealistic conditions. 3D culture models better capture the complexity of in vivo physiology, although the effects of the 3D extracellular matrix have not been well studied. Monitoring the instantaneous and resultant cellular responses to exposure, and the influence of the 3D environment, could provide an enhanced understanding of the fundamental processes of photocarcinogenesis. This work presents an analysis of the biochemical impacts of simulated solar radiation (SSR) occurring in immortalised human epithelial keratinocytes (HaCaT), in a 3D skin model, compared to 2D culture. Cell viability was monitored using the Alamar Blue colorimetric assay (AB), and the impact of the radiation exposure, at the level of the biomolecular constituents (nucleic acids and proteins), were evaluated through the combination of Raman microspectroscopy and multivariate statistical analysis. The results suggest that SSR exposure induces alterations of the conformational structure of DNA as an immediate impact, whereas changes in the protein signature are primarily seen as a subsequent response.
Collapse
Affiliation(s)
- Ulises Lopez-Gonzalez
- School of Physics, Nanolab Research Center, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Alan Casey
- School of Physics, Nanolab Research Center, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Lopez-Gonzalez U, Casey A, J Byrne H. Monitoring the biochemical changes occurring to human keratinocytes exposed to solar radiation by Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000337. [PMID: 33098270 DOI: 10.1002/jbio.202000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Solar radiation exposure is recognised to be a significant contributor to the development of skin cancer. Monitoring the simultaneous and consecutive mechanisms of interaction could provide a greater understanding of the process of photocarcinogenesis. This work presents an analysis of the biochemical and morphological changes occurring to immortalised human epithelial keratinocyte (HaCaT) cell cultures exposed to simulated solar radiation (SSR). Cell viability was monitored with the aid of the Alamar Blue assay, morphological examination was done with haematoxylin and eosin staining (H&E) and changes to the biochemical constituents (nucleic acids and proteins) as a result of the radiation insult were demonstrated through a combination of Raman microspectroscopy and multivariate analysis of spectral patterns. The spectral results suggest that SSR induces changes to the conformational structure of DNA as an immediate result of the radiation, whereas alteration in the protein signature is mostly seen as a later response.
Collapse
Affiliation(s)
- Ulises Lopez-Gonzalez
- School of Physics, Nanolab Research Center, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Alan Casey
- School of Physics, Nanolab Research Center, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
6
|
Byrne HJ, Bonnier F, Efeoglu E, Moore C, McIntyre J. In vitro Label Free Raman Microspectroscopic Analysis to Monitor the Uptake, Fate and Impacts of Nanoparticle Based Materials. Front Bioeng Biotechnol 2020; 8:544311. [PMID: 33195114 PMCID: PMC7658377 DOI: 10.3389/fbioe.2020.544311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
The continued emergence of nanoscale materials for nanoparticle-based therapy, sensing and imaging, as well as their more general adoption in a broad range of industrial applications, has placed increasing demands on the ability to assess their interactions and impacts at a cellular and subcellular level, both in terms of potentially beneficial and detrimental effects. Notably, however, many such materials have been shown to interfere with conventional in vitro cellular assays that record only a single colorimetric end-point, challenging the ability to rapidly screen cytological responses. As an alternative, Raman microspectroscopy can spatially profile the biochemical content of cells, and any changes to it as a result of exogenous agents, such as toxicants or therapeutic agents, in a label free manner. In the confocal mode, analysis can be performed at a subcellular level. The technique has been employed to confirm the cellular uptake and subcellular localization of polystyrene nanoparticles (PSNPs), graphene and molybdenum disulfide micro/nano plates (MoS2), based on their respective characteristic spectroscopic signatures. In the case of PSNPs it was further employed to identify their local subcellular environment in endosomes, lysosomes and endoplasmic reticulum, while for MoS2 particles, it was employed to monitor subcellular degradation as a function of time. For amine functionalized PSNPs, the potential of Raman microspectroscopy to quantitatively characterize the dose and time dependent toxic responses has been explored, in a number of cell lines. Comparing the responses to those of poly (amidoamine) nanoscale polymeric dendrimers, differentiation of apoptotic and necrotic pathways based on the cellular spectroscopic responses was demonstrated. Drawing in particular from the experience of the authors, this paper details the progress to date in the development of applications of Raman microspectroscopy for in vitro, label free analysis of the uptake, fate and impacts of nanoparticle based materials, in vitro, and the prospects for the development of a routine, label free high content spectroscopic analysis technique.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Franck Bonnier
- UFR Sciences Pharmaceutiques, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Esen Efeoglu
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Caroline Moore
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Jennifer McIntyre
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Notarstefano V, Gioacchini G, Byrne HJ, Zacà C, Sereni E, Vaccari L, Borini A, Carnevali O, Giorgini E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:206-214. [PMID: 30639914 DOI: 10.1016/j.saa.2018.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Endometriosis is a chronic gynaecological disease characterised by the presence of endometrial cells in extra-uterine regions. One of the main factors impacting on the fertility of women affected by endometriosis is the poor oocyte quality. Granulosa Cells (GCs) regulate oocyte development and maintain the appropriate microenvironment for the acquisition of its competence; hence, the dysregulation of these functions in GCs can lead to severe cellular damages also in oocytes. In this study, luteinized GCs samples were separately collected from both ovaries of women affected by Unilateral Ovarian Endometriosis and analysed by infrared and Raman microspectroscopy. The spectral data were compared with those of GCs from women with diagnosis of tubal, idiopathic or male infertility (taken as control group). The coupling of these two spectroscopic techniques sheds new light on the alteration induced by this pathology on GCs metabolism and biochemical composition. In fact, the study revealed similar biochemical modifications in GCs from both ovaries of women affected by unilateral ovarian endometriosis, such as the alteration of the protein pattern, the induction of oxidative stress mechanisms, and the deregulation of lipid and carbohydrate metabolisms. These evidences suggest that unilateral endometriosis impairs the overall ovarian functions, causing alterations not only in the ovary with endometriotic lesions but also in the contralateral "healthy" one.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 2, Ireland
| | - Carlotta Zacà
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Elena Sereni
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Lisa Vaccari
- SISSI Beamline, Elettra-Sincrotrone Trieste, S.C.p.A., S.S. 14 - Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Andrea Borini
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
8
|
Baker MJ, Byrne HJ, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian SG, Martin FL, Moger J, Stone N, Sulé-Suso J. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst 2018; 143:1735-1757. [DOI: 10.1039/c7an01871a] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review examines the state-of-the-art of clinical applications of infrared absorption and Raman spectroscopy, outstanding challenges, and progress towards translation.
Collapse
Affiliation(s)
- Matthew J. Baker
- WestCHEM
- Technology and Innovation Centre
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1RD
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | | | - Peter Gardner
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Alex Henderson
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Sergei G. Kazarian
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences
- University of Central Lancashire
- Preston PR1 2HE
- UK
| | - Julian Moger
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Nick Stone
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Guy Hilton Research Centre
- Stoke on Trent ST4 7QB
- UK
| |
Collapse
|
9
|
A polysaccharide isolated from Cynomorium songaricum Rupr. protects PC12 cells against H2O2-induced injury. Int J Biol Macromol 2016; 87:222-8. [DOI: 10.1016/j.ijbiomac.2016.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
|
10
|
Ilin Y, Kraft ML. Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra. Analyst 2015; 139:2177-85. [PMID: 24643201 DOI: 10.1039/c3an02156d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular and matrix cues that induce stem cell differentiation into distinct cell lineages must be identified to permit the ex vivo expansion of desired cell populations for clinical applications. Combinatorial biomaterials enable screening multiple different microenvironments while using small numbers of rare stem cells. New methods to identify the phenotypes of individual cells in cocultures with location specificity would increase the efficiency and throughput of these screening platforms. Here, we demonstrate that partial least-squares discriminant analysis (PLS-DA) models of calibration Raman spectra from cells in pure cultures can be used to identify the lineages of individual cells in more complex culture environments. The calibration Raman spectra were collected from individual cells of four different lineages, and a PLS-DA model that captured the Raman spectral profiles characteristic of each cell line was created. The application of these models to Raman spectra from test sets of cells indicated individual, fixed and living cells in separate monocultures, as well as those in more complex culture environments, such as cocultures, could be identified with low error. Cells from populations with very similar biochemistries could also be identified with high accuracy. We show that these identifications are based on reproducible cell-related spectral features, and not spectral contributions from the culture environment. This work demonstrates that PLS-DA of Raman spectra acquired from pure monocultures provides an objective, noninvasive, and label-free approach for accurately identifying the lineages of individual, living cells in more complex coculture environments.
Collapse
Affiliation(s)
- Yelena Ilin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
11
|
Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM, Lasch P, Heraud P, Sulé-Suso J, Sockalingum GD. Spectropathology for the next generation: Quo vadis? Analyst 2015; 140:2066-73. [DOI: 10.1039/c4an02036g] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational spectroscopy for biomedical applications has shown great promise although its translation into clinical practice has, as yet, been relatively slow. This Editorial assesses the challenges facing the field and the potential way forward.
Collapse
Affiliation(s)
- Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | | | - Gerwin J. Puppels
- RiverD International B.V
- 3029 AK Rotterdam
- the Netherlands
- Erasmus-University Medical Center
- Center for Optical Diagnostics & Therapy
| | - Nick Stone
- Biomedical Spectroscopy Lab
- School of Physics
- College of Engineering
- Mathematics and Physical Sciences
- University of Exeter
| | - Bayden Wood
- Centre for Biospectroscopy and School of Chemistry
- Monash University
- Clayton
- Australia
| | | | - Peter Lasch
- Robert Koch-Institut
- Center for Biological Threats and Special Pathogens: Proteomics and Spectroscopy (ZBS6)
- 13353 Berlin
- Germany
| | - Phil Heraud
- Centre for Biospectroscopy and School of Chemistry
- Monash University
- Australia
| | - Josep Sulé-Suso
- Institute for Science & Technology in Medicine
- Keele University
- Stoke-on-Trent
- UK
| | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne
- MéDIAN-Biophotonique et Technologies pour la Santé
- UFR de Pharmacie
- 51096 Reims Cedex
- France
| |
Collapse
|
12
|
Kuzmin AN, Pliss A, Prasad PN. Changes in Biomolecular Profile in a Single Nucleolus during Cell Fixation. Anal Chem 2014; 86:10909-16. [DOI: 10.1021/ac503172b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrey N. Kuzmin
- Institute for Lasers, Photonics and Biophotonics, Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
13
|
Fullwood LM, Griffiths D, Ashton K, Dawson T, Lea RW, Davis C, Bonnier F, Byrne HJ, Baker MJ. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy. Analyst 2014; 139:446-54. [PMID: 24308030 DOI: 10.1039/c3an01832f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.
Collapse
Affiliation(s)
- Leanne M Fullwood
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, PR1 2HE, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bonnier F, Petitjean F, Baker MJ, Byrne HJ. Improved protocols for vibrational spectroscopic analysis of body fluids. JOURNAL OF BIOPHOTONICS 2014; 7:167-179. [PMID: 24132993 DOI: 10.1002/jbio.201300130] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 05/28/2023]
Abstract
The applications of vibrational spectroscopy to the examination of human blood serum are explored. Although FTIR spectra can be recorded in aqueous solutions at (gelatin) concentrations as low as 100 mg/L, the high-wavenumber region remains obscured by water absorption. Using Raman spectroscopy, high quality spectra of gelatine solutions as low as 10 mg/L can be achieved, also covering the high-wavenumber regions. In human serum, spectral profiles are weak and partially obscured by water features. Dried deposits are shown to be physically and chemically inhomogeneous resulting in reduced measurement reproducibility. Concentration of the serum using commercially available centrifugal filter devices results in an improvement in the spectral intensity and quality. Additionally, in Raman spectroscopy, reduced background and significantly enhanced signal collection is achievable by measurement in an inverted geometry. The improved protocols for spectroscopic measurement of human serum are applicable to a range of bodily fluids and should accelerate potential clinical applications.
Collapse
Affiliation(s)
- Franck Bonnier
- Focas Research Institute, Dublin Institute of Technology DIT, Camden Row, Dublin 8, Ireland.
| | | | | | | |
Collapse
|
15
|
|
16
|
Keating ME, Byrne HJ. Raman spectroscopy in nanomedicine: current status and future perspective. Nanomedicine (Lond) 2013; 8:1335-51. [PMID: 23914968 DOI: 10.2217/nnm.13.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.
Collapse
Affiliation(s)
- Mark E Keating
- Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland.
| | | |
Collapse
|
17
|
Ma J, Yang F, Both SK, Kersten-Niessen M, Bongio M, Pan J, Cui FZ, Kasper FK, Mikos AG, Jansen JA, van den Beucken JJJP. Comparison of cell-loading methods in hydrogel systems. J Biomed Mater Res A 2013; 102:935-46. [PMID: 23650286 DOI: 10.1002/jbm.a.34784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 12/31/2022]
Abstract
Bone regenerative medicine, based on the combined use of cells and scaffolds, represents a promising strategy in bone regeneration. Hydrogels have attracted huge interests for application as a scaffold for minimally invasive surgery. Collagen and oligo(poly(ethylene glycol)fumarate) (OPF) hydrogels are the representatives of two main categories of hydrogels, that is, natural- and synthetic-based hydrogels. With these the optimal cell-loading (i.e., cell distribution inside the hydrogels) method was assessed. The cell behavior of both bone marrow- and adipose tissue-derived mesenchymal stem cells (BM- and AT-MSCs) in three loading methods, which are dispersed (i.e., homogeneous cell encapsulation, D), sandwich (i.e., cells located in between two hydrogel layers, S), and spheroid (i.e., cell pellets encapsulation, Sp) loading in two hydrogel systems (i.e., collagen and OPF), was compared. The results suggested that the cell behavior was influenced by the hydrogel type, meaning cells cultured in collagen hydrogels had higher proliferation and osteogenic differentiation capacity than in OPF hydrogels. In addition, AT-MSCs exhibited higher proliferation and osteogenic properties compared to BM-MSCs. However, no difference was observed for mineralization among the three loading methods, which did not approve the hypothesis that S and Sp loading would increase osteogenic capacity compared to D loading. In conclusion, D and Sp loading represents two promising cell loading methods for injectable bone substitute materials that allow application of minimally invasive surgery for cell-based regenerative treatment.
Collapse
Affiliation(s)
- Jinling Ma
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands; Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Whelan DR, Bambery KR, Puskar L, McNaughton D, Wood BR. Synchrotron Fourier transform infrared (FTIR) analysis of single living cells progressing through the cell cycle. Analyst 2013; 138:3891-9. [DOI: 10.1039/c3an00316g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Keating ME, Bonnier F, Byrne HJ. Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells. Analyst 2012; 137:5792-802. [PMID: 23114273 DOI: 10.1039/c2an36169h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spectral cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of spectral cross-correlation analysis is introduced and compared with the performance of classical least squares analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene nanoparticles in a lipid rich environment, which is suggestive of the membrane rich endoplasmic reticulum. However, short comings in identification of all nanoparticle signatures in the cell using K-means clustering are apparent, as highlighted by principal component analysis of the identified clusters which demonstrates that K-means clustering does not identify all regions where spectral signatures of the nanoparticles are evident. Thus, two more sophisticated analytical approaches to the extraction of the nanoparticle signatures from the Raman spectral datasets, namely classical least squares analysis and cross-correlation analysis, were employed and are demonstrated to improve the identification of spectroscopic signatures characteristic of polystyrene nanoparticles in a cellular environment. Additionally, to investigate the local biochemical environment in which the nanoparticles are trafficked, a pure spectrum of 3-sn-phosphatidyl ethanolamine was cross-correlated against the Raman dataset, further suggesting the particles are indeed localized in a lipid rich environment. Furthermore, to demonstrate the robustness and versatility of the analysis method, a spectrum of pure RNA was used to demonstrate that a differentiation could be made between DNA of the nucleus and RNA of the nucleolus using the supervised spectral cross-correlation technique.
Collapse
Affiliation(s)
- Mark E Keating
- Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| | | | | |
Collapse
|
20
|
Dorney J, Bonnier F, Garcia A, Casey A, Chambers G, Byrne HJ. Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst 2012; 137:1111-9. [DOI: 10.1039/c2an15977e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Pudlas M, Koch S, Bolwien C, Thude S, Jenne N, Hirth T, Walles H, Schenke-Layland K. Raman spectroscopy: a noninvasive analysis tool for the discrimination of human skin cells. Tissue Eng Part C Methods 2011; 17:1027-40. [PMID: 21774693 DOI: 10.1089/ten.tec.2011.0082] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Noninvasive monitoring of tissue-engineered (TE) constructs during their in vitro maturation or postimplantation in vivo is highly relevant for graft evaluation. However, traditional methods for studying cell and matrix components in engineered tissues such as histology, immunohistochemistry, or biochemistry require invasive tissue processing, resulting in the need to sacrifice of TE constructs. Raman spectroscopy offers the unique possibility to analyze living cells label-free in situ and in vivo solely based on their phenotype-specific biochemical fingerprint. In this study, we aimed to determine the applicability of Raman spectroscopy for the noninvasive identification and spectral separation of primary human skin fibroblasts, keratinocytes, and melanocytes, as well as immortalized keratinocytes (HaCaT cells). Multivariate analysis of cell-type-specific Raman spectra enabled the discrimination between living primary and immortalized keratinocytes. We further noninvasively distinguished between fibroblasts, keratinocytes, and melanocytes. Our findings are especially relevant for the engineering of in vitro skin models and for the production of artificial skin, where both the biopsy and the transplant consist of several cell types. To realize a reproducible quality of TE skin, the determination of the purity of the cell populations as well as the detection of potential molecular changes are important. We conclude therefore that Raman spectroscopy is a suitable tool for the noninvasive in situ quality control of cells used in skin tissue engineering applications.
Collapse
Affiliation(s)
- Marieke Pudlas
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nawaz H, Bonnier F, Knief P, Howe O, Lyng FM, Meade AD, Byrne HJ. Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma. Analyst 2010; 135:3070-6. [DOI: 10.1039/c0an00541j] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Bonnier F, Knief P, Lim B, Meade AD, Dorney J, Bhattacharya K, Lyng FM, Byrne HJ. Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst 2010; 135:3169-77. [DOI: 10.1039/c0an00539h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|