1
|
Zu L, Wang X, Liu P, Xie J, Zhang X, Liu W, Li Z, Zhang S, Li K, Giannetti A, Bi W, Chiavaioli F, Shi L, Guo T. Ultrasensitive and Multiple Biomarker Discrimination for Alzheimer's Disease via Plasmonic & Microfluidic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308783. [PMID: 38509587 PMCID: PMC11200013 DOI: 10.1002/advs.202308783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Indexed: 03/22/2024]
Abstract
As the population ages, the worldwide prevalence of Alzheimer's disease (AD) as the most common dementia in the elderly is increasing dramatically. However, a long-term challenge is to achieve rapid and accurate early diagnosis of AD by detecting hallmarks such as amyloid beta (Aβ42). Here, a multi-channel microfluidic-based plasmonic fiber-optic biosensing platform is established for simultaneous detection and differentiation of multiple AD biomarkers. The platform is based on a gold-coated, highly-tilted fiber Bragg grating (TFBG) and a custom-developed microfluidics. TFBG excites a high-density, narrow-cladding-mode spectral comb that overlaps with the broad absorption of surface plasmons for high-precision interrogation, enabling ultrasensitive monitoring of analytes. In situ detection and in-parallel discrimination of different forms of Aβ42 in cerebrospinal fluid (CSF) are successfully demonstrated with a detection of limit in the range of ≈30-170 pg mL-1, which is one order of magnitude below the clinical cut-off level in AD onset, providing high detection sensitivity for early diagnosis of AD. The integration of the TFBG sensor with multi-channel microfluidics enables simultaneous detection of multiple biomarkers using sub-µL sample volumes, as well as combining initial binding rate and real-time response time to differentiate between multiple biomarkers in terms of binding kinetics. With the advantages of multi-parameter, low consumption, and highly sensitive detection, the sensor represents an urgently needed potentials for large-scale diagnosis of diseases at early stage.
Collapse
Affiliation(s)
- Lijiao Zu
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Xicheng Wang
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Peng Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Jiwei Xie
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of MedicineBeth Israel Deaconess Medical Center, Harvard UniversityBoston02215USA
| | - Weiru Liu
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Zhencheng Li
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Kaiwei Li
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Ambra Giannetti
- National Research Council of Italy (CNR), Institute of Applied Physics “Nello Carrara” (IFAC)Sesto Fiorentino50019Italy
| | - Wei Bi
- Department of NeurologyThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR), Institute of Applied Physics “Nello Carrara” (IFAC)Sesto Fiorentino50019Italy
| | - Lei Shi
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Tuan Guo
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
2
|
Shimanouchi T, Iwamura M, Sano Y, Hayashi K, Noda M, Kimura Y. Classification of binding property of amyloid β to lipid membranes: Membranomic research using quartz crystal microbalance combined with the immobilization of lipid planar membranes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140987. [PMID: 38128808 DOI: 10.1016/j.bbapap.2023.140987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
A biomembrane-related fibrillogenesis of Amyloid β from Alzheimer' disease (Aβ) is closely related to its accumulation behavior. A binding property of Aβ peptides from Alzheimer' disease to lipid membranes was then classified by a quartz crystal microbalance (QCM) method combined with an immobilization technique using thiol self-assembled membrane. The accumulated amounts of Aβ, Δfmax, was determined from the measurement of the maximal frequency reduction using QCM. The plots of Δfmax to Aβ concentration gave the slope and saturated value of Δfmax, (Δfmax)sat that are the parameters for binding property of Aβ to lipid membranes. Therefore, the Aβ-binding property on lipid membranes was classified by the slope and (Δfmax)sat. The plural lipid system was described as X + Y where X = L1, L1/L2, and L1/L2/L3. The slope and (Δfmax)sat values plotted as a function of mixing ratio of Y to X was classified on a basis of the lever principle (LP). The LP violation observed in both parameters resulted from the formation of the crevice or pothole, as Aβ-specific binding site, generated at the boundary between ld and lo phases. The LP violation observed only in the slope resulted from glycolipid-rich domain acting as Aβ-specific binding site. Furthermore, lipid planar membranes indicating strong LP violation favored strong fibrillogenesis. Especially, lipid planar membranes indicating the LP violation only in the slope induced lateral aggregated and spherulitic fibrillar aggregates. Thus, the classification of Aβ binding property on lipid membranes appeared to be related to the fibrillogenesis with a certain morphology.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan.
| | - Miki Iwamura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Yasuhiro Sano
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Keita Hayashi
- National Institute of Technology, Nara College, 22 Yada-cho, Yamatokoriyama, Nara, Japan
| | - Minoru Noda
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yukitaka Kimura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Khan ZA, Park S. AuNPs- Aβ-Ni-HRP sandwich assay: A new sensitive colorimetric method for the detection of Aβ 1-40. Talanta 2022; 237:122946. [PMID: 34736673 DOI: 10.1016/j.talanta.2021.122946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Amyloid β-peptide (Aβ) is a key predictor for preclinical diagnosis of Alzheimer's disease (AD) and vascular diseases. In this work, we propose a gold nanoparticle (AuNPs)-Aβ-nickel (Ni)-horseradish peroxidase (HRP) based colorimetric assay for the detection of Aβ1-40. The consecutive binding of Aβ1-40 to AuNPs and metal ions is designed and examined for Aβ-specific aggregation of AuNPs and the generation of quantitative colorimetric signals. The affinity of Aβ1-40 towards various metal ions was studied first, and two metal ions, Cu and Ni, were specifically tested with Metal Ion-Binding Site Prediction (MIB) and High-resolution Electrospray Ionization Mass Spectrometry (HR-ESI-MS). Subsequently, the binding of Aβ1-40 and AuNPs was examined, and the binding between Aβ-AuNPs and Ni-HRP was finally analyzed by UV-Vis and nano-zetasizer. Based on the characterized dual binding of Aβ1-40, a colorimetric sandwich assay was developed and the analytical performance of the developed assay has been evaluated with standard solutions and human serum samples. Good linearity within a range from 0 nM to 10 nM was found. The detection limits of 0.22 nM in the standard sample and 0.23 nM in the human serum sample have been demonstrated. The newly developed colorimetric sandwich assay is a short, simple, antibody-free assay and achieves high sensitivity with only 100 μL Aβ1-40 samples. The assay has immense potential for the detection of Aβ1-40 in biological or biomedical diagnosis.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
4
|
Kemiklioglu E, Tuncgovde EB, Ozsarlak-Sozer G. Development of liquid crystal biosensor for the detection of amyloid beta-42 levels associated with Alzheimer's disease. J Biosci Bioeng 2021; 132:88-94. [PMID: 33934978 DOI: 10.1016/j.jbiosc.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
This study represents the development of a biosensor which is based on the liquid crystal (LC) orientation as a function of the peptide concentration to detect an amyloid-beta-42 (Aβ42) antibody-antigen binding events. The Aβ42 peptide binds to the Aβ42 antibody forming an immunocomplex which is immobilized on the Dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP) coated surface. The disturbed orientation of LCs as a result of the binding of the formed immunocomplex was observed using the polarized optical microscope (POM) as a function of decreasing Aβ42 peptide concentration from 1000 to 1 pg/ml. The concentration, as low as 1 pg/ml of Aβ42 peptide was able to be successfully detected in our system. Apolipoprotein E4 (ApoE4), that specifically bound to the Aβ42 peptide, was added into the system and a remarkable change in reflection spectra of samples was observed with increasing Aβ42 peptide concentration. The concentration of ApoE4 protein was detected in the range of 0.1-30 nM by this system due to the interaction between the two proteins.
Collapse
Affiliation(s)
- Emine Kemiklioglu
- Bioengineering Department, Manisa Celal Bayar University, Yunusemre, Manisa 45140, Turkey.
| | | | - Gonen Ozsarlak-Sozer
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35100, Turkey
| |
Collapse
|
5
|
Yin Y, Chen G, Gong L, Ge K, Pan W, Li N, Machuki JO, Yu Y, Geng D, Dong H, Gao F. DNAzyme-Powered Three-Dimensional DNA Walker Nanoprobe for Detection Amyloid β-Peptide Oligomer in Living Cells and in Vivo. Anal Chem 2020; 92:9247-9256. [PMID: 32536153 DOI: 10.1021/acs.analchem.0c01592] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid β-peptide oligomer (AβO) is widely acknowledged as the promising biomarker for the diagnosis of Alzheimer's disease (AD). In this work, we designed a three-dimensional (3D) DNA walker nanoprobe for AβO detection and real-time imaging in living cells and in vivo. The presence of AβO triggered the DNAzyme walking strand to cleave the fluorophore (TAMRA)-labeled substrate strand modified on the gold nanoparticle (AuNP) surface and release TAMRA-labeled DNA fragment, resulting in the recovery of fluorescent signal. The entire process was autonomous and continuous, without external fuel strands or protease, and finally produced plenty of TAMRA fluorescence, achieving signal amplification effect. The nanoprobe enabled the quantitative detection of AβO in vitro, and the limit of detection was 22.3 pM. Given the good biocompatibility of 3D DNA walker nanoprobe, we extended this enzyme-free signal amplification method to real-time imaging of AβO. Under the microscope, nanoprobe accurately located and visualized the distribution of AβO in living cells. Moreover, in vivo imaging results showed that our nanoprobe could be used to effectively distinguish the AD mice from the wild-type mice. This nanoprobe with the advantages of great sensitivity, high specificity, and convenience, provides an outstanding prospect for AD's early diagnosis development.
Collapse
Affiliation(s)
- Yiming Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Guofang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ling Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| |
Collapse
|
6
|
Ding S, Xu Y, Liu Q, Gu H, Zhu A, Shi G. Interface engineering of microelectrodes toward ultrasensitive monitoring of β-amyloid peptides in cerebrospinal fluid in Alzheimer's disease. Analyst 2020; 145:2331-2338. [DOI: 10.1039/c9an02285f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aβ monomers directed the assembly of Cu2+-PEI/AuNPs-hemin nanoprobes into network aggregates on a microelectrode interface for enhanced electrochemical analysis.
Collapse
Affiliation(s)
- Shushu Ding
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - Yunxia Xu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - Qi Liu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - Hui Gu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan University of Science and Technology
- Xiangtan
- People's Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- People's Republic of China
| |
Collapse
|
7
|
Wang Y, Zhang Y, Sha H, Xiong X, Jia N. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a g-C 3N 4 Nanosheet and Ru@MOF for Amyloid-β Protein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36299-36306. [PMID: 31514493 DOI: 10.1021/acsami.9b09492] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A dual-wavelength ratiometric electrochemiluminescence resonance energy transfer (ECL-RET) aptasensor based on the carbon nitride nanosheet (g-C3N4 NS) and metal-organic frameworks (Ru@MOFs) as energy donor-receptor pairs is first designed for the detection of the amyloid-β (Aβ) protein. The cathode ECL of g-C3N4 NS gradually decreased, whereas the anode ECL from Ru@MOF pyramidally enhanced along with the increasing concentration of Aβ in a 0.1 M phosphate-buffered saline solution containing 0.1 M S2O82-. Additionally, it is worth noting that 2-amino terephthalic acid from MOF not only can load abundant amounts of luminophor Ru(bpy)32+ but also promote the conversion of more amounts of S2O82- that served as a coreactant accelerator into SO4•-, further enhancing the ECL signal of Ru@MOF. Besides, the ECL intensity from the g-C3N4 NS had a tremendous spectrum overlap with the UV-vis spectrum of Ru@MOF, demonstrating the high-efficiency ECL-RET from g-C3N4 NS to Ru@MOF. According to the ratio of ECL460nm/ECL620nm, the constructed aptasensor for the detection of Aβ showed a wide linear range from 10-5 to 500 ng/mL and a low detection limit of 3.9 fg/mL (S/N = 3) with a correction coefficient of 0.9965. The obtained results certified that the dual-wavelength ratiometric ECL sensor could provide a reliable direction and have the potential for application in biosensing and clinical diagnosis fields.
Collapse
Affiliation(s)
- Yinfang Wang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Yao Zhang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Haifeng Sha
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Xin Xiong
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Nengqin Jia
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
8
|
Zhang Y, Meng S, Ding J, Peng Q, Yu Y. Transition metal-coordinated graphitic carbon nitride dots as a sensitive and facile fluorescent probe for β-amyloid peptide detection. Analyst 2019; 144:504-511. [PMID: 30474660 DOI: 10.1039/c8an01620h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we developed a sensitive graphitic carbon nitride quantum dot (gCNQD)-based fluorescent strategy for β-amyloid peptide monomer (Aβ) determination down to the ng mL-1 level for the first time. To realize this goal, the nanostructured gCNQDs were firstly coordinated with four transition metal ions (Cu2+, Cu+, Fe3+, Zn2+). Our findings showed that the fluorescence (FL) intensity of gCNQDs was quenched in the presence of these metal ions possibly due to the effective chelation with the nitrogen element in gCNQDs and subsequent photoinduced electron transfer (PET) of gCNQDs. The degree of fluorescence quenching was found to be the most intense with the addition of Cu2+ and therefore, we selected Cu2+ as the quencher for the following Aβ determination. Through binding to Cu2+, the introduction of Aβ unexpectedly induced a further decline of FL intensity. Importantly, on account of different peptide sequences coexisting in the same cerebral system, including Aβ1-11, Aβ1-16, Aβ1-38, Aβ1-40 and Aβ1-42, their affinities to Cu2+ could be reflected by the distinguished declining extent of FL intensity. The possible mechanism of Aβ sensing by the probe was clarified by TEM characterization. The developed fluorescent biosensor was demonstrated to give a wide linear range from 1 to 700 ng mL-1 and a low detection limit of 0.18 ng mL-1 for Aβ1-42. In the end, the proposed fluorescence approach was successfully applied to monitoring of Aβ1-42 variations in the cortex and hippocampus of AD rats.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P.R. China.
| | | | | | | | | |
Collapse
|
9
|
Yu Y, Wang P, Zhu X, Peng Q, Zhou Y, Yin T, Liang Y, Yin X. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst 2018; 143:323-331. [PMID: 29192910 DOI: 10.1039/c7an01683b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper ions (Cu2+) play a critical role in biological processes and are directly involved in β-amyloid peptide (Aβ) aggregation, which is responsible for the occurrence and development of Alzheimer's disease (AD). Therefore, combined determination of Cu2+ and Aβ in one analytical system is of great significance to understand the exact nature of the AD event. This work presents a novel ratiometric electrochemical biosensor for the dual determination of Cu2+ and Aβ1-42. This unique sensor is based on a 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) and poly(diallyldimethylammonium chloride) (PDDA)-bi functionalized single-walled carbon nanotubes (ABTS-PDDA/CNTs) composite. The inclusion of ABTS not only enhanced the sensitivity, but it also acted as an inner reference molecule to improve detection accuracy. The specific recognition of Cu2+ was realized by neurokinin B (NKB) coatings on the ABTS-PDDA/CNTs surface to form a [CuII(NKB)2] complex with Cu2+. The ABTS-PDDA/CNTs-NKB modified electrode also displayed an excellent electrochemical response toward the Aβ1-42 monomer, when a certain amount of the Aβ1-42 monomer was added to Cu2+-contained PBS buffer, which was due to the release of Cu2+ from the [CuII(NKB)2] complex through Aβ binding to Cu2+. Meanwhile, our work showed that Cu2+ bound Aβ1-42 was concentration-dependent. Consequently, the presented electrochemical approach was capable of quantifying two important biological species associated with AD by one single biosensor, with the detection limits of 0.04 μM for Cu2+ and 0.5 ng mL-1 for Aβ1-42, respectively. Finally, the ratiometric electrode was successfully applied for monitoring Cu2+ and Aβ1-42 variations in plasma and hippocampus of normal and AD rats.
Collapse
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gulisano W, Melone M, Li Puma DD, Tropea MR, Palmeri A, Arancio O, Grassi C, Conti F, Puzzo D. The effect of amyloid-β peptide on synaptic plasticity and memory is influenced by different isoforms, concentrations, and aggregation status. Neurobiol Aging 2018; 71:51-60. [PMID: 30092511 DOI: 10.1016/j.neurobiolaging.2018.06.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023]
Abstract
The increase of oligomeric amyloid-beta (oAβ) has been related to synaptic dysfunction, thought to be the earliest event in Alzheimer's disease pathophysiology. Conversely, the suppression of endogenous Aβ impaired synaptic plasticity and memory, suggesting that the peptide is needed in the healthy brain. However, different species, aggregation forms and concentrations of Aβ might differently influence synaptic function/dysfunction. Here, we have tested the contribution of monomeric and oligomeric Aβ42 and Aβ40 at 200 nM and 200 pM concentrations on hippocampal long-term potentiation and spatial memory. We found that, when at 200 nM, oAβ40, oAβ42, and monomeric Aβ42 impaired long-term potentiation and memory, whereas only oAβ42 200 pM enhanced synaptic plasticity and memory and rescued the detrimental effect due to depletion of endogenous Aβ. Interestingly, quantification of monomer-like and oligomer-like species carried out by transmission electron microscopy revealed an increase of the monomer/oligomer ratio in the oAβ42 200 pM preparation, suggesting that the content of monomers and oligomers depends on the final concentration of the solution.
Collapse
Affiliation(s)
- Walter Gulisano
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marcello Melone
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy
| | - Maria Rosaria Tropea
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agostino Palmeri
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Fiorenzo Conti
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Puzzo
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
An integrated strategy to correlate aggregation state, structure and toxicity of Aß 1-42 oligomers. Talanta 2018; 188:17-26. [PMID: 30029360 DOI: 10.1016/j.talanta.2018.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
Despite great efforts, it is not known which oligomeric population of amyloid beta (Aß) peptides is the main neurotoxic mediator in Alzheimer's disease. In vitro and in vivo experiments are challenging, mainly because of the high aggregation tendency of Aß (in particular of Aß 1-42 peptide), as well as because of the dynamic and non covalent nature of the prefibrillar aggregates. As a step forward in these studies, an analytical platform is here proposed for the identification and characterization of Aß 1-42 oligomeric populations resulting from three different sample preparation protocols. To preserve the transient nature of aggregates, capillary electrophoresis is employed for monitoring the oligomerization process in solution until fibril precipitation, which is probed by transmission electron microscopy. Based on characterization studies by ultrafiltration and SDS-PAGE/Western Blot, we find that low molecular weight oligomers build up over time and form bigger aggregates (> dodecamers) and that the kinetics strongly depends on sample preparations. The use of phosphate buffer results to be more aggregating, since trimers are the smallest species found in solution, whereas monomers and dimers are obtained by solubilizing Aß 1-42 in a basic mixture. For the first time, attenuated total reflection-Fourier transform infrared spectroscopy is used to assign secondary structure to the separated oligomers. Random coil and/or α-helix are most abundant in smaller species, whereas ß-sheet is the predominant conformation in bigger aggregates, which in turn are demonstrated to be responsible for Aß 1-42 toxicity.
Collapse
|
12
|
Advances and Pitfalls in the Capillary Electrophoresis Analysis of Aggregates of Beta Amyloid Peptides. SEPARATIONS 2017. [DOI: 10.3390/separations5010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Dai Y, Molazemhosseini A, Liu CC. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. BIOSENSORS-BASEL 2017; 7:bios7030029. [PMID: 28726727 PMCID: PMC5618035 DOI: 10.3390/bios7030029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction between antibody and antigen of β-amyloid 42 to the redox couple probe of K4Fe(CN)6 and K3Fe(CN)6. Differential pulse voltammetry (DPV) served as the transduction mechanism measuring the current output derived from the redox coupling reaction. The biosensor was a three-electrode electrochemical system, and the working and counter electrodes were 50 nm thin gold film deposited by a sputtering technique. The reference electrode was a thick-film printed Ag/AgCl electrode. Laser ablation technique was used to define the size and structure of the biosensor. Cost-effective roll-to-roll manufacturing process was employed in the fabrication of the biosensor, making it simple and relatively inexpensive. Self-assembled monolayers (SAM) of 3-Mercaptopropionic acid (MPA) was employed to covalently immobilize the thiol group on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N–hydroxysuccinimide (NHS) was undertaken for cross-linking antibody of β-amyloid 42 to the carboxylic groups on one end of the MPA. The antibody concentration of β-amyloid 42 used was 18.75 µg/mL. The concentration range of β-amyloid 42 in this study was from 0.0675 µg/mL to 0.5 µg/mL for both PBS and undiluted human serum. DPV measurements showed excellent response in this antigen concentration range. Interference study of this biosensor was carried out in the presence of Tau protein antigen. Excellent specificity of this β-amyloid 42 biosensor was demonstrated without interference from other species, such as T-tau protein.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Chemical & Biomolecular Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Alireza Molazemhosseini
- Dip. Chimica Materiali e Ing. Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 MIlan, Italy.
| | - Chung Chiun Liu
- Department of Chemical & Biomolecular Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Li CZ, Grajales S, Shuang S, Dong C, Nair M. β-Amyloid Biomarker Detection for Alzheimer’s Disease. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Bai J, Gong Z, Wang J, Wang C. Enzymatic hydrogelation of self-assembling peptide I4K2and its antibacterial and drug sustained-release activities. RSC Adv 2017. [DOI: 10.1039/c7ra09743c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
I4K2hydrogel induced by plasma amine oxidase (PAO) has antibacterial and drug sustained-release properties.
Collapse
Affiliation(s)
- Jingkun Bai
- Shandong Provincial Key Laboratory of Biopharmaceuticals
- School of Bioscience and Technology
- Weifang Medical University
- Weifang
- P. R. China
| | - Zhongying Gong
- Shandong Provincial Key Laboratory of Biopharmaceuticals
- School of Bioscience and Technology
- Weifang Medical University
- Weifang
- P. R. China
| | - Jingxin Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- P. R. China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| |
Collapse
|
16
|
Li SS, Lin CW, Wei KC, Huang CY, Hsu PH, Liu HL, Lu YJ, Lin SC, Yang HW, Ma CCM. Non-invasive screening for early Alzheimer's disease diagnosis by a sensitively immunomagnetic biosensor. Sci Rep 2016; 6:25155. [PMID: 27112198 PMCID: PMC4844990 DOI: 10.1038/srep25155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/12/2016] [Indexed: 01/28/2023] Open
Abstract
Amyloid-beta peptide 1–42 (Aβ42) is considered as a reliable biomarker for the early diagnosis of Alzheimer’s disease (AD). Thus, it is urgent to develop a simple and efficient method for the detection of Aβ42. In this work, a reusable biosensor based on magnetic nitrogen-doped graphene (MNG) modified Au electrode for the detection of Aβ42 has been developed. The antibodies of Aβ 1–28 (Aβab) are used as the specific biorecognition element for Aβ42 that were conjugated on the surface of MNG. In the presence of magnetic nanoparticles on MNG, the electrode coating material, the biosensor can be quickly constructed, without requiring an electrode drying process, which reduce the analysis time and is convenient for proceeding to detection. The reusable biosensor with good reproducibility and stability was linear within the range from 5 pg mL−1 to 800 pg mL−1, covering the cut-off level of Aβ42 and a detection limit of 5 pg mL−1 had been achieved. Furthermore, the fabricated biosensor for Aβ42 detection not only improves the detection performance but also reduces the cost and shortens the response time, demonstrating its potential in diagnosing applications.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Chih-Wen Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Po-Hung Hsu
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 33302, Taiwan, ROC
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 33302, Taiwan, ROC
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Sheng-Chi Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan, ROC
| | - Chen-Chi M Ma
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
17
|
Deiber JA, Peirotti MB, Piaggio MV. Charge regulation phenomenon predicted from the modeling of polypeptide electrophoretic mobilities as a relevant mechanism of amyloid-beta peptide oligomerization. Electrophoresis 2016; 37:711-8. [DOI: 10.1002/elps.201500391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas, Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| |
Collapse
|
18
|
Zhou Y, Liu L, Hao Y, Xu M. Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer's Disease. Chem Asian J 2016; 11:805-17. [DOI: 10.1002/asia.201501355] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Lantao Liu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Yuanqiang Hao
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| |
Collapse
|
19
|
Lin D, Ren R, Tan Q, Wu Q, Li F, Li L, Liu S, He J. A facile and dynamic assay for the detection of peptide aggregation. Anal Bioanal Chem 2016; 408:1609-14. [DOI: 10.1007/s00216-015-9271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
|
20
|
Pi J, Long Y, Huang N, Cheng Y, Zheng H. A sandwich immunoassay for detection of Aβ1-42 based on quantum dots. Talanta 2016; 146:10-5. [DOI: 10.1016/j.talanta.2015.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
21
|
Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40) using amyloid-β fibrillization promoting peptide. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
22
|
Zhou Y, Dong H, Liu L, Xu M. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2144-9. [PMID: 25641831 DOI: 10.1002/smll.201402593] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Indexed: 05/20/2023]
Abstract
A simple method for specific colorimetric sensing of Alzheimer's disease related amyloid-β peptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | | | | | | |
Collapse
|
23
|
Deiber JA, Peirotti MB, Piaggio MV. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities. Electrophoresis 2015; 36:805-12. [DOI: 10.1002/elps.201400395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas, UNL; Santa Fe Argentina
| |
Collapse
|
24
|
Yu YY, Zhang L, Sun XY, Li CL, Qiu Y, Sun HP, Tang DQ, Liu YW, Yin XX. A sensitive colorimetric strategy for monitoring cerebral β-amyloid peptides in AD based on dual-functionalized gold nanoplasmonic particles. Chem Commun (Camb) 2015; 51:8880-3. [DOI: 10.1039/c5cc01855b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A sensitive colorimetric probe based on GNPs was designed and applied to Aβ determination.
Collapse
Affiliation(s)
- Yan-yan Yu
- Department of Pharmaceutical Analysis
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Lin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Xiao-yu Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Cheng-lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Yu Qiu
- Department of Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Hao-peng Sun
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Dao-quan Tang
- Department of Pharmaceutical Analysis
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Yao-wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Xiao-xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| |
Collapse
|
25
|
Gelsolin bound β-amyloid peptides(1-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer's disease. Biosens Bioelectron 2014; 68:115-121. [PMID: 25562737 DOI: 10.1016/j.bios.2014.12.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022]
Abstract
A method for the highly sensitive determination of soluable β-amyloid peptides (Aβ(1-40/1-42)) that employs a detection bioconjugate of HRP-Au-gelsolin as the electrochemical nanoprobe is presented. Contrary to previous detection notions that utilized antibodies, which could specifically recognize the N- or C-terminus of peptides, we demonstrate herein that the reported specific binding between gelsolin and Aβ might provide an alternative way to evaluate the peptides sensitively and selectively. The HRP-Au-gelsolin nanohybrid was designed by one-pot functionalization of Au nanaoparticles (NPs) with horseradish peroxidase (HRP) and gelsolin. Through a sandwich-type sensor array, soluble Aβ(1-40/1-42) were captured onto the array due to the interactions between targeted peptides and surface-confined gelsolin and electrochemical signals were amplified by abundant attachments of HRP labeled on AuNPs, which could specifically catalyse its substrate, 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to give rise to measurable signals. The proposed gelsolin-bound Aβ methodology displayed satisfactory sensitivity and wide linear range towards Aβ(1-40/1-42) with a detection limit down to 28 pM, which are verified to be sensitive-enough for the assessment of Aβ levels both in normal and Alzheimer's disease (AD) rat brains. Experimental results indicated that compared with normal group, soluble β-amyloid peptide levels in cerebrospinal fluid (CSF) and targeted brain tissues of AD rats all declined with differentiable degrees. In short, the newly unfolding strategy presents valuable information related to pathological events in brain and will exhibit a braw perspective for the early diagnosis of AD process.
Collapse
|
26
|
Brinet D, Kaffy J, Oukacine F, Glumm S, Ongeri S, Taverna M. An improved capillary electrophoresis method for in vitro monitoring of the challenging early steps of Aβ1-42 peptide oligomerization: application to anti-Alzheimer's drug discovery. Electrophoresis 2014; 35:3302-9. [PMID: 25219962 DOI: 10.1002/elps.201400271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022]
Abstract
We report an improved CE method to monitor in vitro the self-assembly of monomeric amyloid β-peptide (42 amino acids amyloid β-peptide, Aβ1-42 ) and in particular the crucial early steps involved in the formation of the neurotoxic oligomers. In order to start the kinetics from the beginning, sample preparation was optimized to provide samples containing exclusively the monomeric form. The CE method was also improved using a dynamic coating and by reducing the separation distance. Using this method, the disappearance of the monomer as well as the progressive formation of four species during the self-assembly process can now be monitored and quantified over time. The hydrodynamic radius of the species present at the initial kinetics step was estimated around 1.8 nm by Taylor dispersion analysis while SDS-PAGE analyses showed the predominance of the monomer. These results confirmed that the Aβ1-42 species present at this initial time was the monomer. Methylene blue, an anti-Alzheimer disease candidate, was then evaluated. In spite of an oligomerization inhibition, the enhanced disappearance of the Aβ1-42 monomer provoked by methylene blue was demonstrated for the first time. This method, allowing the monomeric and smallest oligomeric species to be monitored, represents a new accurate and precise way to evaluate compounds for drug discovery.
Collapse
Affiliation(s)
- Dimitri Brinet
- Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien de Paris Sud, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France; Molécules Fluorées et Chimie Médicinale, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
27
|
Yu Y, Zhang L, Li C, Sun X, Tang D, Shi G. A Method for Evaluating the Level of Soluble β-Amyloid(1-40/1-42)in Alzheimer’s Disease Based on the Binding of Gelsolin to β-Amyloid Peptides. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Yu Y, Zhang L, Li C, Sun X, Tang D, Shi G. A method for evaluating the level of soluble β-amyloid(1-40/1-42) in Alzheimer's disease based on the binding of gelsolin to β-amyloid peptides. Angew Chem Int Ed Engl 2014; 53:12832-5. [PMID: 25244702 DOI: 10.1002/anie.201405001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/10/2014] [Indexed: 01/27/2023]
Abstract
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β-amyloid Aβ(1-40/1-42) peptides in a rat model of Alzheimer's disease (AD) is described. In contrast to previous antibody-based methods, β-amyloid(1-40/1-42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β-amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.
Collapse
Affiliation(s)
- Yanyan Yu
- Department of Pharmaceutical Analysis, Xuzhou Medical College, Xuzhou 221004 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004 (China)
| | | | | | | | | | | |
Collapse
|
29
|
Deiber JA, Piaggio MV, Peirotti MB. Estimation of electrokinetic and hydrodynamic global properties of relevant amyloid-beta peptides through the modeling of their effective electrophoretic mobilities and analysis of their propensities to aggregation. J Sep Sci 2014; 37:2618-24. [DOI: 10.1002/jssc.201400533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas, UNL; Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| |
Collapse
|
30
|
Pryor NE, Moss MA, Hestekin CN. Capillary electrophoresis for the analysis of the effect of sample preparation on early stages of Aβ1-40 aggregation. Electrophoresis 2014; 35:1814-20. [PMID: 24729203 DOI: 10.1002/elps.201400012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/05/2022]
Abstract
Aggregation of the amyloid-β protein (Aβ) contributes to the neurodegeneration characteristic of Alzheimer's disease. Of particular importance are the early stages of aggregation, which involve the formation of soluble oligomers and protofibrils. In these studies, we demonstrate the potential for CE with UV detection using a polyethylene oxide separation matrix to identify the evolution of various oligomeric species of Aβ1-40 . To demonstrate the efficacy of this technique, UV-CE was utilized to compare two methods commonly used to prepare Aβ for aggregation experiments and their effect on the formation of early aggregates. SEC-purified Aβ1-40 initially contained more small species, including monomer, than did freshly dissolved Aβ1-40 pretreated with hexafluoroisopropanol. Strikingly, the lag time to oligomer formation for SEC-isolated Aβ1-40 samples was ∼23 h shorter compared to freshly dissolved Aβ1-40 samples. Furthermore, oligomers formed from the aggregation of SEC-purified Aβ1-40 persisted within solution for a longer period of time. These results indicate that the initial sample preparation has a drastic influence on the early stages of Aβ1-40 aggregation. This is the first report of the use of UV-CE with a separation matrix to study the effect of sample preparation on early aggregation of Aβ1-40 . UV-CE was also used in parallel with dot blot analysis and inhibitory compounds to discern structural characteristics of individual oligomer peaks, demonstrating the capacity of UV-CE as a complimentary technique to further understand the aggregation process.
Collapse
Affiliation(s)
- N Elizabeth Pryor
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | | |
Collapse
|
31
|
Competitive electrochemical immunoassay for detection of β-amyloid (1–42) and total β-amyloid peptides using p-aminophenol redox cycling. Biosens Bioelectron 2014; 51:208-12. [DOI: 10.1016/j.bios.2013.07.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022]
|
32
|
Liu L, Zhao F, Ma F, Zhang L, Yang S, Xia N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles. Biosens Bioelectron 2013; 49:231-5. [PMID: 23770394 DOI: 10.1016/j.bios.2013.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
β-Amyloid (Aβ) peptides are believed to be important for the diagnosis and prognosis of Alzheimer's disease (AD) serving as reliable molecular biomarkers. In this work, we reported a simple and sensitive electrochemical strategy for the detection of total Aβ peptides using gold nanoparticles modified with Aβ(1-16)-heme (denoted as Aβ(1-16)-heme-AuNPs). Monoclonal antibody (mAb) specific to the common N-terminus of Aβ was immobilized onto gold electrode for the capture of Aβ(1-16)-heme-AuNPs. The anchored Aβ(1-16)-heme-AuNPs showed strong electrocatalytic O2 reduction. Pre-incubation of the mAb-covered electrode with native Aβ decreased the amount of Aβ(1-16)-heme-AuNPs immobilized onto the electrode, resulting in the decrease of the reduction current of O2 to H2O2. The competitive assay is sensitive and selective to Aβ peptides. The voltammetric responses were found to be proportional to the concentrations of Aβ ranging from 0.02 to 1.50nM, and a detection limit of 10 pM was achieved. To demonstrate the viability of the method for the analysis of Aβ in real sample, artificial cerebrospinal fluid (aCSF) containing Aβ(1-40), Aβ(1-42) and Aβ(1-16) was tested. We believe that the method would offer a useful means for quantifying Aβ in a biological matrix, and be valuable in the design of new types of electrochemical biosensors for the detection of peptides and proteins.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
A data treatment method for detecting fluorescence anisotropy peaks in capillary electropherograms. Anal Chim Acta 2012; 739:99-103. [DOI: 10.1016/j.aca.2012.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/12/2012] [Indexed: 11/21/2022]
|
34
|
Picou RA, Schrum DP, Ku G, Cerqua RA, Kheterpal I, Gilman SD. Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 2012; 425:104-12. [DOI: 10.1016/j.ab.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 12/28/2022]
|
35
|
Staton SJR, Jones PV, Ku G, Gilman SD, Kheterpal I, Hayes MA. Manipulation and capture of Aβ amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP). Analyst 2012; 137:3227-9. [DOI: 10.1039/c2an35138b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
37
|
Jones PV, Staton SJR, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 2011; 401:2103-11. [PMID: 21830138 DOI: 10.1007/s00216-011-5284-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 01/23/2023]
Abstract
Biological fluids can be considered to contain information-rich mixtures of biochemicals and particles that enable clinicians to accurately diagnose a wide range of pathologies. Rapid and inexpensive analysis of blood and other bodily fluids is a topic gaining substantial attention in both science and medicine. One line of development involves microfluidic approaches that provide unique advantages over entrenched technologies, including rapid analysis times, microliter sample and reagent volumes, potentially low cost, and practical portability. The present study focuses on the isolation and concentration of human blood cells from small-volume samples of diluted whole blood. Separation of cells from the matrix of whole blood was accomplished using constant potential insulator-based gradient dielectrophoresis in a converging, sawtooth-patterned microchannel. The channel design enabled the isolation and concentration of specific cell types by exploiting variations in their characteristic physical properties. The technique can operate with isotonic buffers, allowing capture of whole cells, and reproducible capture occurred at specific locales within the channel over a global applied voltage range of 200-700 V.
Collapse
Affiliation(s)
- Paul V Jones
- Department of Chemistry and Biochemistry and Center for Solid State Electronics Research, Arizona State University, PO Box 871604, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
38
|
Picou RA, Kheterpal I, Wellman AD, Minnamreddy M, Ku G, Gilman SD. Analysis of Aβ (1-40) and Aβ (1-42) monomer and fibrils by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:627-32. [DOI: 10.1016/j.jchromb.2011.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/24/2022]
|