1
|
Do Egito EM, Silva-Júnior AG, Lucena RP, Oliveira MD, Andrade CA. Electrochemical platform for anti-cardiolipin antibody detection in human syphilitic serum. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
2
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
3
|
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. BIOSENSORS-BASEL 2017; 7:bios7030025. [PMID: 28677660 PMCID: PMC5618031 DOI: 10.3390/bios7030025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
- The New Mexico Consortium, Los Alamos, NM 87544, USA.
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
4
|
Baksh MM, Finn M. An experimental check of backscattering interferometry. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 243:977-981. [PMID: 28529409 PMCID: PMC5433263 DOI: 10.1016/j.snb.2016.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Backscattering interferometry (BSI) was used to determine the association constants for four well-known biomolecular interactions: protein A + IgG, trypsin + antitrypsin, trypsin + p-aminobenzamidine, and antithrombin + heparin. Each gave well-defined binding curves and Kd values in close agreement with published findings obtained using other techniques. These results stand in direct contrast to the claims in a 2015 publication in this journal (Discussion of "Back Scattering Interferometry revisited-a theoretical and experimental investigation" Jørgensen, T.M.; Jepsen, S.T.; Sørensen, H.S.; di Gennaro, A.K.; Kristensen, S.R. Sensors and Actuators B 2015, 220, 1328-1337, doi: 10.1016/j.snb.2015.06.121), thus invalidating the claim that BSI is unable to make measurements of this kind. The experimental details are discussed, and several potential sources of error in the previous publication are identified. No comments are made here on the discussion of the theoretical aspects of the BSI technique.
Collapse
|
5
|
Jepsen ST, Jørgensen TM, Zong W, Trydal T, Kristensen SR, Sørensen HS. Evaluation of back scatter interferometry, a method for detecting protein binding in solution. Analyst 2015; 140:895-901. [PMID: 25503796 DOI: 10.1039/c4an01129e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions in general should contribute to the BSI signal. We have established a BSI system to investigate this subject in further detail. We contribute with a thorough analysis of the robustness of the sensor including unwanted contributions to the interferometric signal caused by temperature variation and dissolved gasses. We report a limit of the effective minimum detectability of refractive index at the 10(-7) level. Long term stability was examined by simultaneously monitoring the temperature inside the capillary revealing an average drift of 2.0 × 10(-7) per hour. Finally we show that measurements on protein A incubated with immunoglobulin G do not result in a signal that can be attributed to binding affinities as otherwise claimed in literature.
Collapse
Affiliation(s)
- S T Jepsen
- Dept. of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
6
|
Olmsted IR, Hassanein M, Kussrow A, Hoeksema M, Li M, Massion PP, Bornhop DJ. Toward rapid, high-sensitivity, volume-constrained biomarker quantification and validation using backscattering interferometry. Anal Chem 2014; 86:7566-74. [PMID: 24954171 PMCID: PMC4215853 DOI: 10.1021/ac501355q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
Realizing personalized medicine, which promises to enable early disease detection, efficient diagnostic staging, and therapeutic efficacy monitoring, hinges on biomarker quantification in patient samples. Yet, the lack of a sensitive technology and assay methodology to rapidly validate biomarker candidates continues to be a bottleneck for clinical translation. In our first direct and quantitative comparison of backscattering interferometry (BSI) to fluorescence sensing by ELISA, we show that BSI could aid in overcoming this limitation. The analytical validation study was performed against ELISA for two biomarkers for lung cancer detection: Cyfra 21-1 and Galectin-7. Spiked serum was used for calibration and comparison of analytical figures of merit, followed by analysis of blinded patient samples. Using the ELISA antibody as the probe chemistry in a mix-and-read assay, BSI provided significantly lower detection limits for spiked serum samples with each of the biomarkers. The limit of quantification (LOQ) for Cyrfa-21-1 was measured to be 230 pg/mL for BSI versus 4000 pg/mL for ELISA, and for Galectin-7, it was 13 pg/mL versus 500 pg/mL. The coefficient of variation for 5 day, triplicate determinations was <15% for BSI and <10% for ELISA. The two techniques correlated well, ranging from 3-29% difference for Cyfra 21-1 in a blinded patient sample analysis. The label-free and free-solution operation of BSI allowed for a significant improvement in analysis speed, with greater ease, improved LOQ values, and excellent day-to-day reproducibility. In this unoptimized format, BSI required 5.5-fold less sample quantity needed for ELISA (a 10 point calibration curve measured in triplicate required 36 μL of serum for BSI vs 200 μL for ELISA). The results indicate that the BSI platform can enable rapid, sensitive analytical validation of serum biomarkers and should significantly impact the validation bottleneck of biomarkers.
Collapse
Affiliation(s)
- Ian R. Olmsted
- Department
of Chemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, 4226 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Mohamed Hassanein
- Division
of Allergy, Pulmonary and Critical Care Medicine, Thoracic Program,
Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
| | - Amanda Kussrow
- Department
of Chemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, 4226 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Megan Hoeksema
- Division
of Allergy, Pulmonary and Critical Care Medicine, Thoracic Program,
Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
| | - Ming Li
- Department
of Biostatistics, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine Nashville, Tennessee 37235, United States
| | - Pierre P. Massion
- Division
of Allergy, Pulmonary and Critical Care Medicine, Thoracic Program,
Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
- Department
of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
- Veterans Affairs,
Tennessee Valley Healthcare System, Nashville Campus, Nashville, Tennessee 37235, United States
| | - Darryl J. Bornhop
- Department
of Chemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, 4226 Stevenson Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
7
|
Sin MLY, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 2014; 14:225-44. [PMID: 24524681 DOI: 10.1586/14737159.2014.888313] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers. Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor. Challenges to be overcome include sample preparation, matrix effects and system integration. We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings.
Collapse
Affiliation(s)
- Mandy L Y Sin
- Department of Urology, Stanford University School of Medicine , Stanford, CA 94305-5118 , USA
| | | | | | | |
Collapse
|
8
|
Adams NM, Olmsted IR, Haselton FR, Bornhop DJ, Wright DW. The effect of hybridization-induced secondary structure alterations on RNA detection using backscattering interferometry. Nucleic Acids Res 2013; 41:e103. [PMID: 23519610 PMCID: PMC3643578 DOI: 10.1093/nar/gkt165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Backscattering interferometry (BSI) has been used to successfully monitor molecular interactions without labeling and with high sensitivity. These properties suggest that this approach might be useful for detecting biomarkers of infection. In this report, we identify interactions and characteristics of nucleic acid probes that maximize BSI signal upon binding the respiratory syncytial virus nucleocapsid gene RNA biomarker. The number of base pairs formed upon the addition of oligonucleotide probes to a solution containing the viral RNA target correlated with the BSI signal magnitude. Using RNA folding software mfold, we found that the predicted number of unpaired nucleotides in the targeted regions of the RNA sequence generally correlated with BSI sensitivity. We also demonstrated that locked nucleic acid (LNA) probes improved sensitivity approximately 4-fold compared to DNA probes of the same sequence. We attribute this enhancement in BSI performance to the increased A-form character of the LNA:RNA hybrid. A limit of detection of 624 pM, corresponding to ∼10(5) target molecules, was achieved using nine distinct ∼23-mer DNA probes complementary to regions distributed along the RNA target. Our results indicate that BSI has promise as an effective tool for sensitive RNA detection and provides a road map for further improving detection limits.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
9
|
Haddad GL, Young SC, Heindel ND, Bornhop DJ, Flowers RA. Back-Scattering Interferometry: An Ultrasensitive Method for the Unperturbed Detection of Acetylcholinesterase-Inhibitor Interactions. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Haddad GL, Young SC, Heindel ND, Bornhop DJ, Flowers RA. Back-scattering interferometry: an ultrasensitive method for the unperturbed detection of acetylcholinesterase-inhibitor interactions. Angew Chem Int Ed Engl 2012; 51:11126-30. [PMID: 23037915 DOI: 10.1002/anie.201203640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/24/2012] [Indexed: 11/12/2022]
Abstract
A series of inhibitors of acetylcholinesterase (AChE) have been screened by back-scattering interferometry (BSI). Enzyme levels as low as 100 pM (22,000 molecules of AChE) can be detected. This method can be used to screen for mixed AChE inhibitors, agents that have shown high efficacy against Alzheimer's disease, by detecting dual-binding interactions. E = enzyme, I = inhibitor, S = substrate.
Collapse
|
11
|
Kussrow A, Enders CS, Bornhop DJ. Interferometric methods for label-free molecular interaction studies. Anal Chem 2012; 84:779-92. [PMID: 22060037 PMCID: PMC4317347 DOI: 10.1021/ac202812h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amanda Kussrow
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Carolyn S. Enders
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Darryl J. Bornhop
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Olmsted IR, Xiao Y, Cho M, Csordas AT, Sheehan JH, Meiler J, Soh HT, Bornhop DJ. Measurement of aptamer-protein interactions with back-scattering interferometry. Anal Chem 2011; 83:8867-70. [PMID: 22032342 DOI: 10.1021/ac202823m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the quantitative measurement of aptamer-protein interactions using backscattering interferometry (BSI) and show that BSI can determine when distinct binding regions are accessed. As a model system, we utilized two DNA aptamers (Tasset and Bock) that bind to distinct sites of a target protein (human α-thrombin). This is the first time BSI has been used to study a multivalent system in free solution wherein more than one ligand binds to a single target. We measured aptamer equilibrum dissociation constants (K(d)) of 3.84 nM (Tasset-thrombin) and 5.96 nM (Bock-thrombin), in close agreement with the literature. Unexpectedly, we observed allosteric effects such that the binding of the first aptamer resulted in a significant change in the binding affinity of the second aptamer. For example, the K(d) of Bock aptamer binding to preformed Tasset-thrombin complexes was 7-fold lower (indicating higher affinity) compared to binding to thrombin alone. Preliminary modeling efforts suggest evidence for allosteric linkage between the two exosites.
Collapse
|
13
|
Lau JL, Baksh MM, Fiedler JD, Brown SD, Kussrow A, Bornhop DJ, Ordoukhanian P, Finn M. Evolution and protein packaging of small-molecule RNA aptamers. ACS NANO 2011; 5:7722-9. [PMID: 21899290 PMCID: PMC3209476 DOI: 10.1021/nn2006927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A high-affinity RNA aptamer (K(d) = 50 nM) was efficiently identified by SELEX against a heteroaryldihydropyrimidine structure, chosen as a representative drug-like molecule with no cross reactivity with mammalian or bacterial cells. This aptamer, its weaker-binding variants, and a known aptamer against theophylline were each embedded in a longer RNA sequence that was encapsidated inside a virus-like particle by a convenient expression technique. These nucleoprotein particles were shown by backscattering interferometry to bind to the small-molecule ligands with affinities similar to those of the free (nonencapsidated) aptamers. The system therefore comprises a general approach to the production and sequestration of functional RNA molecules, characterized by a convenient label-free analytical technique.
Collapse
Affiliation(s)
- Jolene L. Lau
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael M. Baksh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jason D. Fiedler
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven D. Brown
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Kussrow
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Darryl J. Bornhop
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Phillip Ordoukhanian
- Center for Protein and Nucleic Acid Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M.G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Baksh MM, Kussrow AK, Mileni M, Finn MG, Bornhop DJ. Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nat Biotechnol 2011; 29:357-60. [PMID: 21399645 DOI: 10.1038/nbt.1790] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022]
Abstract
Although membrane proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show that backscattering interferometry (BSI) can accurately quantify ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest.
Collapse
Affiliation(s)
- Michael M Baksh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
15
|
Morcos EF, Kussrow A, Enders C, Bornhop D. Free-solution interaction assay of carbonic anhydrase to its inhibitors using back-scattering interferometry. Electrophoresis 2011; 31:3691-5. [PMID: 20972990 DOI: 10.1002/elps.201000389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Back-scattering interferometry (BSI) is a label-free, free-solution, small-volume technique used for characterizing binding interactions, which is also relevant to a growing number of biosensing applications including drug discovery. Here, we use BSI to characterize the interaction of carbonic anhydrase enzyme II with five well-known carbonic anhydrase enzyme II inhibitors (± sulpiride, sulfanilamide, benzene sulfonamide, dansylamide, and acetazolamide) in the presence of DMSO. Dissociation constants calculated for each interaction were consistent with literature values previously obtained using surface plasmon resonance and fluorescence-based competition assays. Results demonstrate the potential of BSI as a drug-screening tool which is fully compatible with DMSO and does not require immobilization or labeling, therefore allowing binding interactions to be characterized in the native state. BSI has the potential for reducing labor costs, sample consumption, and assay time while providing enhanced reliability over existing techniques.
Collapse
Affiliation(s)
- Ereny F Morcos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|