1
|
Semitela Â, Ramalho G, Capitão A, Sousa C, Mendes AF, Aap Marques P, Completo A. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. J Tissue Eng 2022; 13:20417314211069342. [PMID: 35024136 PMCID: PMC8743920 DOI: 10.1177/20417314211069342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023] Open
Abstract
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibers during electrospinning may be a solution. However, before this approach can be effectively employed, it is critical to identify whether chondrocytes are adversely affected. Several electrospraying operating settings were tested to determine their effect on the survival and function of an immortalized human chondrocyte cell line. These chondrocytes survived through an electric field formed by low needle-to-collector distances and low voltage. No differences in chondrocyte viability, morphology, gene expression, or proliferation were found. Preliminary data of the combination of electrospraying and polymer electrospinning disclosed that chondrocyte integration was feasible using an alternated approach. The overall increase in chondrocyte viability over time indicated that the embedded cells retained their proliferative capacity. Besides the cell line, primary chondrocytes were also electrosprayed under the previously optimized operational conditions, revealing the higher sensitivity degree of these cells. Still, their post-electrosprayed viability remained considerably high. The data reported here further suggest that bio-electrospraying under the optimal operational conditions might be a promising alternative to the existent cell seeding techniques, promoting not only cells safe delivery to the scaffold, but also the development of cellularized cartilage tissue constructs.
Collapse
Affiliation(s)
- Ângela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Gonçalo Ramalho
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Capitão
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Cátia Sousa
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Alexandrina F Mendes
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Paula Aap Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
3
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 03/30/2024] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
4
|
Pharmaceutical Applications of Electrospraying. J Pharm Sci 2016; 105:2601-2620. [DOI: 10.1016/j.xphs.2016.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/01/2023]
|
5
|
Han YL, Wang S, Zhang X, Li Y, Huang G, Qi H, Pingguan-Murphy B, Li Y, Lu TJ, Xu F. Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discov Today 2014; 19:763-73. [PMID: 24508818 DOI: 10.1016/j.drudis.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
Collapse
Affiliation(s)
- Yu Long Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Shuqi Wang
- Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Hao Qi
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and training Center, Beijing, 100094, China
| | - Tian Jian Lu
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China.
| |
Collapse
|
6
|
Braghirolli DI, Zamboni F, Chagastelles PC, Moura DJ, Saffi J, Henriques JAP, Pilger DA, Pranke P. Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering. BIOMICROFLUIDICS 2013; 7:44130. [PMID: 24404063 PMCID: PMC3772937 DOI: 10.1063/1.4819747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/16/2013] [Indexed: 05/27/2023]
Abstract
Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- D I Braghirolli
- Hematology and Stem Cell Laboratory-Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil ; Material Science Post-graduate Programme, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil
| | - F Zamboni
- Hematology and Stem Cell Laboratory-Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - P C Chagastelles
- Hematology and Stem Cell Laboratory-Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - J Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul 90050-170, Brazil ; Department of Biophysics/Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - J A P Henriques
- Department of Biophysics/Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil ; Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - D A Pilger
- Hematology and Stem Cell Laboratory-Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - P Pranke
- Hematology and Stem Cell Laboratory-Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil ; Material Science Post-graduate Programme, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil ; Stem Cell Research Institute (SCRI), Porto Alegre, Rio Grande do Sul 90020-010, Brazil
| |
Collapse
|
7
|
Jayasinghe SN. Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 2013; 138:2215-23. [DOI: 10.1039/c3an36599a] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Andreu N, Thomas D, Saraiva L, Ward N, Gustafsson K, Jayasinghe SN, Robertson BD. In vitro and in vivo interrogation of bio-sprayed cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2495-2500. [PMID: 22648794 DOI: 10.1002/smll.201200138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/06/2012] [Indexed: 06/01/2023]
Abstract
Bio-sprays can directly form pre-organized cell-bearing structures for applications ranging from engineering functional tissues to the forming of cultures, most useful for modeling disease, to the discovery and development of drugs. Bio-electrosprays and aerodynamically assisted bio-jets, are leading approaches that have been demonstrated as having far-reaching ramifications for regenerative biology and medicine.
Collapse
Affiliation(s)
- Nuria Andreu
- Centre for Molecular Medicine & Infection, Department of Medicine, Flowers Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Griessinger E, Jayasinghe SN, Bonnet D. Aerodynamically assisted bio-jetting of hematopoietic stem cells. Analyst 2012; 137:1329-33. [DOI: 10.1039/c2an16027g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Jayasinghe SN, Warnes G, Scotton CJ. Bio-electrosprayed living composite matrix implanted into mouse models. Macromol Biosci 2011; 11:1364-9. [PMID: 21755598 DOI: 10.1002/mabi.201100131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/24/2011] [Indexed: 11/11/2022]
Abstract
We show that composite de novo structures can be generated using bio-electrosprays. Mouse lung fibroblasts are bio-electrosprayed directly with a biopolymer to form cell-bearing matrices, which are viable even when implanted subcutaneously into murine hosts. Generated cell-bearing matrices are assessed in-vitro and found to undergo all expected cellular behaviour. Subsequent in-vivo studies demonstrate the implanted living matrices integrating as expected with the surrounding microenvironment. The in-vitro and in-vivo studies elucidate and validate the ability for either bio-electrosprays or cell electrospinning to form a desired living architecture for undergoing investigation for repairing, replacing and rejuvenating damaged and/or ageing tissues.
Collapse
Affiliation(s)
- Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.
| | | | | |
Collapse
|
11
|
Pakes NK, Jayasinghe SN, Williams RSB. Bio-electrospraying and aerodynamically assisted bio-jetting the model eukaryotic Dictyostelium discoideum: assessing stress and developmental competency post treatment. J R Soc Interface 2011; 8:1185-91. [PMID: 21288957 PMCID: PMC3119884 DOI: 10.1098/rsif.2010.0696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bio-electrospraying (BES) and aerodynamically assisted bio-jetting (AABJ) have recently been established as important novel biospray technologies for directly manipulating living cells. To elucidate their potential in medical and clinical sciences, these bio-aerosol techniques have been subjected to increasingly rigorous investigations. In parallel to these studies, we wish to introduce these unique biotechnologies for use in the basic biological sciences, for handling a wide range of cell types and systems, thus increasing the range and the scope of these techniques for modern research. Here, the authors present the analysis of the new use of these biospray techniques for the direct handling of the simple eukaryotic biomedical model organism Dictyostelium discoideum. These cells are widely used as a model for immune cell chemotaxis and as a simple model for development. We demonstrate that AABJ of these cells did not cause cell stress, as defined by the stress-gene induction, nor affect cell development. Furthermore, although BES induced the increased expression of one stress-related gene (gapA), this was not a generalized stress response nor did it affect cell development. These data suggest that these biospray techniques can be used to directly manipulate single cells of this biomedical model without inducing a generalized stress response or perturbing later development.
Collapse
Affiliation(s)
- Nicholl K Pakes
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | |
Collapse
|
12
|
Carter NA, Jayasinghe SN, Mauri C. Biosprayed spleen cells integrate and function in mouse models. Analyst 2011; 136:3434-7. [DOI: 10.1039/c1an15154a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Jayasinghe SN. Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst 2011; 136:878-90. [DOI: 10.1039/c0an00830c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|