1
|
Fioretto L, Gallo C, Mercogliano M, Ziaco M, Nuzzo G, d'Ippolito G, Follero O, DellaGreca M, Giaccio P, Nittoli V, Ambrosino C, Sordino P, Soluri A, Soluri A, Massari R, D'Amelio M, De Palma R, Fontana A, Manzo E. BODIPY-Based Analogue of the TREM2-Binding Molecular Adjuvant Sulfavant A, a Chemical Tool for Imaging and Tracking Biological Systems. Anal Chem 2024; 96:3362-3372. [PMID: 38348659 DOI: 10.1021/acs.analchem.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.
Collapse
Affiliation(s)
- Laura Fioretto
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marcello Mercogliano
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Marcello Ziaco
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Olimpia Follero
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Paolo Giaccio
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Valeria Nittoli
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- IEOS-CNR, 80131 Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Sicily Marine Centre, Stazione Zoologica Anton Dohrn, via Consolare Pompea 29, 98167 Messina,Italy
| | - Alessandro Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Andrea Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Roberto Massari
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Raffaele De Palma
- Clinica di Medicina Interna, Immunologia Clinica e Medicina Traslazionale, Ospedale San Martino, Largo Rosanna Benzi 10, 16132 Genova,Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Biology, University of Naples "Federico II″, via Cinthia, Bldg.7, 80126 Naples, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| |
Collapse
|
2
|
Temporal analysis of localization and trafficking of glycolipids. Biochem Biophys Res Commun 2020; 532:19-24. [PMID: 32826055 DOI: 10.1016/j.bbrc.2020.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
Glycolipid metabolism occurs in the Golgi apparatus, but the detailed mechanisms have not yet been elucidated. We used fluorescently labeled glycolipids to analyze glycolipid composition and localization changes and shed light on glycolipid metabolism. In a previous study, the fatty chain of lactosyl ceramide was fluorescently labeled with BODIPY (LacCer-BODIPY) before being introduced into cultured cells to analyze the cell membrane glycolipid recycling process. However, imaging analysis of glycolipid recycling is difficult because of limited spatial resolution. Therefore, we examined the microscopic conditions that allow the temporal analysis of LacCer-BODIPY trafficking and localization. We observed that the glycolipid fluorescent probe migrated from the cell membrane to intracellular organelles before returning to the cell membrane. We used confocal microscopy to observe co-localization of the glycolipid probe with endosomes and Golgi markers, demonstrating that it recycles mainly through the trans-Golgi network (TGN). Here, a glycolipid recycling pathway was observed that did not require the lipids to pass through the lysosome.
Collapse
|
3
|
Danne-Rasche N, Rubenzucker S, Ahrends R. Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS. Anal Chim Acta 2020; 1140:199-209. [PMID: 33218482 DOI: 10.1016/j.aca.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae is a eukaryotic model organism widely used for the investigation of fundamental cellular processes and disease mechanisms. Consequently, the lipid landscape of yeast has been extensively investigated and up to this day the lipidome is considered as rather basic. Here, we used a nLC/NSI-MS/MS method combined with a semi-autonomous data analysis workflow for an in-depth evaluation of the steady state yeast lipidome. We identified close to 900 lipid species across 26 lipid classes, including glycerophospholipids, sphingolipids, glycerolipids and sterol lipids. Most lipid classes are dominated by few high abundant species, with a multitude of lower abundant lipids contributing to the overall complexity of the yeast lipidome. Contrary to previously published datasets, odd-chain and diunsaturated fatty acyl moieties were found to be commonly incorporated in multiple lipid classes. Careful data evaluation furthermore revealed the presence of putative new lipid species such as MMPSs (mono-methylated phosphatidylserine), not yet described in yeast. Overall, our analysis achieved a more than 4-fold increase in lipid identifications compared to previous approaches, underscoring the use of nLC/NSI-MS/MS methods for the in-depth investigation of lipidomes.
Collapse
Affiliation(s)
- Niklas Danne-Rasche
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Stefanie Rubenzucker
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Straße 6b, 44227, Dortmund, Germany; Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Arai K, Ohtake A, Daikoku S, Suzuki K, Ito Y, Kabayama K, Fukase K, Kanie Y, Kanie O. Discrimination of cellular developmental states focusing on glycan transformation and membrane dynamics by using BODIPY-tagged lactosyl ceramides. Org Biomol Chem 2020; 18:3724-3733. [PMID: 32364197 DOI: 10.1039/d0ob00547a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycosphingolipids (GSLs) are a group of molecules composed of a hydrophilic glycan part and a hydrophobic ceramide creating a diverse family. GSLs are de novo synthesised from ceramides at the endoplasmic reticulum and Golgi apparatus, and transported to the outer surface of the plasma membrane. It has been known that the glycan structures of GSLs change reflecting disease states. We envisioned that analysing the glycan pattern of GSLs enables distinguishing diseases. For this purpose, we utilised a fluorescently tagged compound, LacCerBODIPY (1). At first, compound 1 was taken up by cultured PC12D cells and transformed into various GSLs. As a result, changes in the GSL patterns of differentiation states of the cells were successfully observed by using an analysis platform, nano-liquid chromatography (LC)-fluorescence detection (FLD)-electrospray ionisation (ESI)-mass spectrometry (MS), which could quantify and provide molecular ions simultaneously. We found that compound 1 remained for about 10 min on the plasma membrane before it was converted into other GSLs. We therefore investigated a more rapid way to discriminate different cellular states by fluorescence recovery after photobleaching, which revealed that it is possible to distinguish the differentiation states as well.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsuko Ohtake
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Shusaku Daikoku
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Katsuhiko Suzuki
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943, Japan
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan and Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan and Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshimi Kanie
- Research promotion division, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Osamu Kanie
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan. and Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
5
|
Danne-Rasche N, Coman C, Ahrends R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal Chem 2018; 90:8093-8101. [PMID: 29792796 DOI: 10.1021/acs.analchem.8b01275] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nano-liquid chromatography (nLC)-nanoelectrospray (NSI) is one of the cornerstones of mass-spectrometry-based bioanalytics. Nevertheless, the application of nLC is not yet prevalent in lipid analyses. In this study, we established a reproducible nLC separation for global lipidomics and describe the merits of using such a miniaturized system for lipid analyses. In order to enable comprehensive lipid analyses that is not restricted to specific lipid classes, we particularly optimized sample preparation conditions and reversed-phase separation parameters. We further benchmarked the developed nLC system to a commonly used high flow HPLC/ESI MS system in terms of lipidome coverage and sensitivity. The comparison revealed an intensity gain between 2 and 3 orders of magnitude for individual lipid classes and an increase in the linear dynamic range of up to 2 orders of magnitude. Furthermore, the analysis of the yeast lipidome using nLC/NSI resulted in more than a 3-fold gain in lipid identifications. All in all, we identified 447 lipids from the core phospholipid lipid classes (PA, PE, PC, PS, PG, and PI) in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Niklas Danne-Rasche
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| |
Collapse
|
6
|
Kanie Y, Taniuchi M, Kanie O. Evaluation of reversed-phase nano liquid chromatography conditions by using reversed-phase thin layer chromatography based on Hansen solubility parameters for the analysis of amphiphilic glycosylsphingolipid transformations. J Chromatogr A 2018; 1534:123-129. [PMID: 29290400 DOI: 10.1016/j.chroma.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
Pulse chase analysis is often used in investigating dynamics of cellular substances. Fluorescently labeled lactosyl sphingosine molecule is useful in chasing its transformation, however the analysis of such metabolites in attomole level is of extreme difficult due to the presence of large amount of endogenous amphiphilic molecules such as glycosphingolipids, sphingomyerin, and glycerophospholipids. Nano LC suites for analyzing the attomole scale metabolites, therefore removal of endogenous substances prior to nano LC and finding appropriate nano LC conditions are necessary. Thus, we focused on the solubility of fluorescent BODIPY-labeled lactosylsphingosine (Lac-Sph-BODIPY) to identify suitable solvents to remove endogenous compounds. In this study, we evaluated solvents by using C18 thin layer chromatography (RP TLC). The mobility (Rf) of Lac-Sph-BODIPY against several solvent mixtures on RP TLC were plotted against polarity and hydrogen bonding capability followed by Hansen solubility parameters (HSPs). The optimum solvent mixture with Rf = 0.3 ± 0.1 was chosen for elimination of endogenous phospholipids on a ZrO2-SiO2 cartridge column and subsequent separation by nano LC. Efficient removal of endogenous phospholipids was demonstrated, and good resolution in nano LC analysis of Lac-Sph-BODIPY extracted from Chinese hamster ovary (CHO)-K1 cells was achieved. It was also shown that the amount of exogenously added compound was important in the investigation of metabolites using cultured cells.
Collapse
Affiliation(s)
- Yoshimi Kanie
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, 259-1292 Kanagawa, Japan
| | - Mizuki Taniuchi
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, 259-1292 Kanagawa, Japan
| | - Osamu Kanie
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, 259-1292 Kanagawa, Japan.
| |
Collapse
|
7
|
Fluorescently labelled glycans and their applications. Glycoconj J 2015; 32:559-74. [DOI: 10.1007/s10719-015-9611-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
|
8
|
Ohara K, Takeda Y, Daikoku S, Hachisu M, Seko A, Ito Y. Profiling Aglycon-Recognizing Sites of UDP-glucose:glycoprotein Glucosyltransferase by Means of Squarate-Mediated Labeling. Biochemistry 2015. [PMID: 26196150 DOI: 10.1021/acs.biochem.5b00785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because of its ability to selectively glucosylate misfolded glycoproteins, UDP-glucose:glycoprotein glucosyltransferase (UGGT) functions as a folding sensor in the glycoprotein quality control system in the endoplasmic reticulum (ER). The unique property of UGGT derives from its ability to transfer a glucose residue to N-glycan moieties of incompletely folded glycoproteins. We have previously discovered nonproteinic synthetic substrates of this enzyme, allowing us to conduct its high-sensitivity assay in a quantitative manner. In this study, we aimed to conduct site-selective affinity labeling of UGGT using a functionalized oligosaccharide probe to identify domain(s) responsible for recognition of the aglycon moiety of substrates. To this end, a probe 1 was designed to selectively label nucleophilic amino acid residues in the proximity of the canonical aglycon-recognizing site of human UGGT1 (HUGT1) via squaramide formation. As expected, probe 1 was able to label HUGT1 in the presence of UDP. Analysis by nano-LC-ESI/MS(n) identified a unique lysine residue (K1424) that was modified by 1. Kyte-Doolittle analysis as well as homology modeling revealed a cluster of hydrophobic amino acids that may be functional in the folding sensing mechanism of HUGT1.
Collapse
Affiliation(s)
- Keiichiro Ohara
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shusaku Daikoku
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masakazu Hachisu
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Seko
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,‡RIKEN, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Son SH, Daikoku S, Ohtake A, Suzuki K, Kabayama K, Ito Y, Kanie O. Syntheses of lactosyl ceramide analogues carrying novel bifunctional BODIPY dyes directed towards the differential analysis of multiplexed glycosphingolipids by MS/MS using iTRAQ. Chem Commun (Camb) 2014; 50:3010-3. [PMID: 24513689 DOI: 10.1039/c4cc00112e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactosyl ceramide analogues carrying novel bifunctional BODIPY-based fluorescent tags were designed and synthesised for live cell imaging. Addition of azide functionality on the fluorophore facilitated isobaric tagging for quantitative multiplexed analysis of biomolecules based on tandem mass spectrometry.
Collapse
Affiliation(s)
- Sang-Hyun Son
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Ohtake A, Daikoku S, Suzuki K, Ito Y, Kanie O. Analysis of the Cellular Dynamics of Fluorescently Tagged Glycosphingolipids by Using a Nanoliquid Chromatography–Tandem Mass Spectrometry Platform. Anal Chem 2013; 85:8475-82. [DOI: 10.1021/ac401632t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Atsuko Ohtake
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Shusaku Daikoku
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Katsuhiko Suzuki
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Osamu Kanie
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
- Tokai University, Institute of Glycoscience, 4-1-1
Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 Japan
| |
Collapse
|
11
|
Essaka DC, Prendergast J, Keithley RB, Palcic MM, Hindsgaul O, Schnaar RL, Dovichi NJ. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons. Anal Chem 2012; 84:2799-804. [PMID: 22400492 DOI: 10.1021/ac2031892] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.
Collapse
Affiliation(s)
- David C Essaka
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | |
Collapse
|