1
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
2
|
Clickable biocompatible brush polymers as a versatile platform toward development of multifunctional drug delivery vehicles. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Fu L, Zhang T, Fu G, Gutekunst WR. Relay Conjugation of Living Metathesis Polymers. J Am Chem Soc 2018; 140:12181-12188. [DOI: 10.1021/jacs.8b07315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Guanyao Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Soxman AG, DeLuca JM, Kinlough KM, Iwig DF, Mathers RT. Functionalization of polyesters with multiple B vitamins. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andrew G. Soxman
- Department of Chemistry; The Pennsylvania State University; New Kensington Pennsylvania 15068
| | - Jenna M. DeLuca
- Department of Chemistry; The Pennsylvania State University; New Kensington Pennsylvania 15068
| | - Kylie M. Kinlough
- Department of Chemistry; The Pennsylvania State University; New Kensington Pennsylvania 15068
| | - David F. Iwig
- Arconic Technology Center; New Kensington Pennsylvania 15069
| | - Robert T. Mathers
- Department of Chemistry; The Pennsylvania State University; New Kensington Pennsylvania 15068
| |
Collapse
|
6
|
Banga RJ, Krovi SA, Narayan SP, Sprangers AJ, Liu G, Mirkin CA, Nguyen ST. Drug-Loaded Polymeric Spherical Nucleic Acids: Enhancing Colloidal Stability and Cellular Uptake of Polymeric Nanoparticles through DNA Surface-Functionalization. Biomacromolecules 2017; 18:483-489. [PMID: 27931093 DOI: 10.1021/acs.biomac.6b01563] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-sized (∼65 nm) doxorubicin (Dox)-loaded polymeric nanoparticles (PNPs) were modified with oligonucleotides to form colloidally stable Dox-loaded polymeric spherical nucleic acid (Dox-PSNA) nanostructures in biological media. The nucleic acid shell facilitates the cellular uptake of Dox-PSNA, which results in in vitro cytotoxicity against SKOV3 cancer cells.
Collapse
Affiliation(s)
- Resham J Banga
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Sai Archana Krovi
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Suguna P Narayan
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Anthony J Sprangers
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Guoliang Liu
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - SonBinh T Nguyen
- Department of Chemical and Biological Engineering, ‡Department of Biomedical Engineering, §Department of Chemistry, and ⊥International Institute of Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
7
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Synthesis and post-polymerization modification of polynorbornene bearing dibromomaleimide side groups. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yang L, Xu J, Han J, Shen Y, Luo Y. A Novel Method for Preparing Click-Ready Latex and Latex with Stability against High Electrolyte Concentrations. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Yingwu Luo
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
10
|
Correction: Hood, M.A., et al. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. Materials 2014, 7, 4057-4087. MATERIALS (BASEL, SWITZERLAND) 2014; 7:7583-7614. [PMID: 28795684 PMCID: PMC5512675 DOI: 10.3390/ma7117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
In [1], several sentences were repeated three times on pages 4062, 4063 and 4065. In addition, many references were incorrect. The errors were introduced by the editorial office during the editing process. We apologize for this mistake and any inconvenience this may have caused to authors and readers. The corrected manuscript is given below.[...].
Collapse
|
11
|
Hou Y, Cao S, Li X, Wang B, Pei Y, Wang L, Pei Z. One-step synthesis of dual clickable nanospheres via ultrasonic-assisted click polymerization for biological applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16909-16917. [PMID: 25211060 DOI: 10.1021/am504479w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dual clickable nanospheres (DCNSs) were synthesized in one step using an efficient approach of ultrasonic-assisted azide-alkyne click polymerization, avoiding the need of surfactants. This novel approach presents a direct clickable monomer-to-nanosphere synthesis. Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and dynamic laser scattering (DLS) were used to characterize the synthesized DCNSs. Numerous terminal alkynyl and azide groups on the surface of DCNSs facilitate effective conjugation of multiple molecules or ligands onto a single nanocarrier platform under mild conditions. To exemplify the potential of DCNSs in biological applications, (1) multivalent glyconanoparticles (GNPs) were prepared by clicking DCNSs with azide-functionalized and alkyne-functionalized lactose sequentially for the determination of carbohydrate-galectin interactions with quartz crystal microbalance (QCM) biosensor. Using protein chip (purified galectin-3 coated on chip) and cell chip (Jurkat cells immobilized on chip), the QCM sensorgrams showed excellent binding activity of GNPs for galectins; (2) fluorescent GNPs were prepared by clicking DCNSs with azide-functionalized Rhodamine B and alkyne-functionalized lactose sequentially in order to target galectin, which is overexpressed on the surface of Jurkat cells. The fluorescent images obtained clearly showed the cellular internalization of fluorescent GNPs. This fluorescent probe could be easily adapted to drugs to construct lectin-targeted drug delivery systems. Thus, DCNSs prepared with our method may provide a wide range of potential applications in glycobiology and biomedicine.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Science, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Kim KO, Kim J, Choi TL. Controlled Ring-Opening Metathesis Polymerization of a Monomer Containing Terminal Alkyne and Its Versatile Postpolymerization Functionalization via Click Reaction. Macromolecules 2014. [DOI: 10.1021/ma500877n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kyung Oh Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Jonglak Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
13
|
Hood MA, Mari M, Muñoz-Espí R. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4057-4087. [PMID: 28788665 PMCID: PMC5453225 DOI: 10.3390/ma7054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/12/2014] [Accepted: 05/09/2014] [Indexed: 01/05/2023]
Abstract
This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ.
Collapse
Affiliation(s)
- Matthew A Hood
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Margherita Mari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| |
Collapse
|
14
|
Sander F, Fluch U, Hermes JP, Mayor M. Dumbbells, trikes and quads: organic-inorganic hybrid nanoarchitectures based on "clicked" gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:349-359. [PMID: 23881793 DOI: 10.1002/smll.201300839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/24/2013] [Indexed: 06/02/2023]
Abstract
The controlled assembly of gold nanoparticles in terms of the spatial arrangement and number of particles is essential for many future applications like electronic devices, sensors and labeling. Here an approach is presented to build up oligomers of mono functionalized gold nanoparticles by the use of 1,3-bipolar azide alkyne cycloaddition click chemistry. The gold nanoparticles of 1.3 nm diameter are stabilized by one dendritic thioether ligand comprising an alkyne function. Together with di-, tri- and tetra-azide linker molecules the gold nanoparticle can be covalently coupled by a wet chemical protocol. The reaction is tracked with IR and UV-vis spectroscopy and the yielded organic-inorganic hybrid structures are analyzed by transmission electron microscopy. To evaluate the success of this click chemistry reaction statistical analysis of the formed oligomers is performed. The geometric and spatial arrangements of the found oligomers match perfectly the calculated values for the used linker molecules. Dimers, trimers and tetramers could be identified after the reaction with the corresponding linker molecule. The results of this model reaction suggest that the used click chemistry protocol is working well with mono functionalized gold nanoparticles.
Collapse
Affiliation(s)
- Fabian Sander
- University of Basel, Department of Chemistry, St. Johannsring 19, CH-4056, Basel, Switzerland
| | | | | | | |
Collapse
|
15
|
van Hensbergen JA, Burford RP, Lowe AB. ROMP (co)polymers with pendent alkyne side groups: post-polymerization modification employing thiol–yne and CuAAC coupling chemistries. Polym Chem 2014. [DOI: 10.1039/c4py00604f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of a series of copolymers via ring-opening metathesis polymerization (ROMP) containing pendent trimethylsilyl-protected alkyne functional groups is described.
Collapse
Affiliation(s)
- Johannes A. van Hensbergen
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| | - Robert P. Burford
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| | - Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| |
Collapse
|
16
|
Kohri M, Kobayashi A, Nannichi Y, Taniguchi T, Kishikawa K. A Green Approach for the Synthesis of Fluorescent Polymer Particles by Combined Use of Enzymatic Miniemulsion Polymerization with Clickable Surfmer and Click Reaction. ACTA ACUST UNITED AC 2014. [DOI: 10.14723/tmrsj.39.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michinari Kohri
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Ayaka Kobayashi
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Yuri Nannichi
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Tatsuo Taniguchi
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Keiki Kishikawa
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| |
Collapse
|
17
|
Staff RH, Willersinn J, Musyanovych A, Landfester K, Crespy D. Janus nanoparticles with both faces selectively functionalized for click chemistry. Polym Chem 2014. [DOI: 10.1039/c4py00085d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Lee SM, Nguyen ST. Smart Nanoscale Drug Delivery Platforms from Stimuli-Responsive Polymers and Liposomes. Macromolecules 2013; 46:9169-9180. [PMID: 28804160 PMCID: PMC5552073 DOI: 10.1021/ma401529w] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the 1960's, stimuli-responsive polymers have been utilized as functional soft materials for biological applications such as the triggered-release delivery of biologically active cargos. Over the same period, liposomes have been explored as an alternative drug delivery system with potentials to decrease the toxic side effects often associated with conventional small-molecule drugs. However, the lack of drug-release triggers and the instability of bare liposomes often limit their practical applications, causing short circulation time and low therapeutic efficacy. This perspective article highlights recent work in integrating these two materials together to achieve a targetable, triggerable nanoscale platform that fulfills all the characteristics of a near-ideal drug delivery system. Through a drop-in, post-synthesis modification strategy, a network of stimuli-responsive polymers can be integrated onto the surface of liposomes to form polymer-caged nanobins, a multifunctional nanoscale delivery platform that allows for multi-drug loading, targeted delivery, triggered drug-release, and theranostic capabilities.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Chemistry and Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743 Korea
| | - SonBinh T. Nguyen
- Department of Chemistry and Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
19
|
Miki K, Inoue T, Ohe K. Metathesis Polymerization-Based Synthesis of Functionalized Polymers Aiming at Medicinal Application. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Kupal SG, Cerroni B, Ghugare SV, Chiessi E, Paradossi G. Biointerface Properties of Core–Shell Poly(vinyl alcohol)-hyaluronic Acid Microgels Based on Chemoselective Chemistry. Biomacromolecules 2012; 13:3592-601. [DOI: 10.1021/bm301034a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sidhendra G. Kupal
- Dipartimento di Scienze
e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Barbara Cerroni
- Dipartimento di Scienze
e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Shivkumar V. Ghugare
- Dipartimento di Scienze
e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Ester Chiessi
- Dipartimento di Scienze
e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Gaio Paradossi
- Dipartimento di Scienze
e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| |
Collapse
|
21
|
Wang J, Mei J, Zhao E, Song Z, Qin A, Sun JZ, Tang BZ. Ethynyl-Capped Hyperbranched Conjugated Polytriazole: Click Polymerization, Clickable Modification, and Aggregation-Enhanced Emission. Macromolecules 2012. [DOI: 10.1021/ma3017037] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ju Mei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Engui Zhao
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhegang Song
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Schaefer M, Hanik N, Kilbinger AFM. ROMP Copolymers for Orthogonal Click Functionalizations. Macromolecules 2012. [DOI: 10.1021/ma301061z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mark Schaefer
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg,
Switzerland
| | - Nils Hanik
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg,
Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg,
Switzerland
| |
Collapse
|
23
|
Baier G, Siebert JM, Landfester K, Musyanovych A. Surface Click Reactions on Polymeric Nanocapsules for Versatile Functionalization. Macromolecules 2012. [DOI: 10.1021/ma300312n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Grit Baier
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Joerg Max Siebert
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Anna Musyanovych
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
24
|
Abstract
Signal amplification based on biofunctional nanomaterials has recently attracted considerable attention due to the need for ultrasensitive bioassays and the trend towards miniaturized assays. The biofunctional nanomaterials can not only produce a synergic effect among catalytic activity, conductivity and biocompatibility to accelerate the signal transduction, but also provide amplified recognition events by high loading of signal tags, leading to a highly sensitive and specific biosensing. Most importantly, nanoscaled materials are in direct contact with the environment, which permits them to act as chemical and biological sensors in single-molecule detection of biomolecules. In this tutorial review, we will focus on recent significant advances in signal amplification strategies combining the cross-disciplines of chemistry, biology, and materials science, and highlight some elegant applications of biofunctional nanomaterials as excellent electronic or optical signal tags in ultrasensitive bioanalysis. The biofunctional nanomaterials-based biosensing opens a series of concepts for basic research and offers new tools for detection of trace amounts of a wide variety of analytes in clinical, environmental, and industrial applications.
Collapse
Affiliation(s)
- Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | |
Collapse
|
25
|
Krovi SA, Swindell EP, O'Halloran TV, Nguyen ST. Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups. ACTA ACUST UNITED AC 2012; 22:25463-25470. [PMID: 23509417 DOI: 10.1039/c2jm35420a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polymer nanoparticles (PNPs) possessing a high density of drug payload have been successfully stabilized against aggregation in biological buffers after amine modification, which renders these PNPs positively charged. The resulting charge-stabilized PNPs retain their original narrow particle size distributions and well-defined spherical morphologies. This stabilization allows these PNPs to have an improved anti-proliferative effect on MDA-MB-231-Br human breast cancer cells compared to non-functionalized PNPs. As a non-cytotoxic control, similar surface-modified PNPs containing cholesterol in place of doxorubicin did not inhibit cell proliferation, indicating that the induced cytotoxic response was solely due to the doxorubicin release from the PNPs.
Collapse
Affiliation(s)
- Sai Archana Krovi
- Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA. ; Tel: +847-467-3347
| | | | | | | |
Collapse
|
26
|
Click Chemistry for Drug Delivery Nanosystems. Pharm Res 2011; 29:1-34. [DOI: 10.1007/s11095-011-0568-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/12/2011] [Indexed: 12/13/2022]
|
27
|
|
28
|
Hensarling RM, Rahane SB, LeBlanc AP, Sparks BJ, White EM, Locklin J, Patton DL. Thiol–isocyanate “click” reactions: rapid development of functional polymeric surfaces. Polym Chem 2011. [DOI: 10.1039/c0py00292e] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lu W, Yuan D, Yakovenko A, Zhou HC. Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis. Chem Commun (Camb) 2011; 47:4968-70. [DOI: 10.1039/c1cc00030f] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|