1
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Liu GL, Su YC, Chuang WH, Ko BT. Synthesis and Characterization of Heterodinuclear Indium(III)/Sodium(I) Complexes Containing Benzotriazole-Derived Phenolate Ligands: Effective Catalysts for Ring-Opening Copolymerization of Carbon Dioxide with Epoxides. Inorg Chem 2024; 63:19582-19592. [PMID: 39387645 DOI: 10.1021/acs.inorgchem.4c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study reported for the first time the facile synthesis of a series of novel structurally well-characterized heterodinuclear indium(III)/sodium(I) dihalide complexes containing benzotriazole-based bis(amino-phenolate) derivatives. All heterobimetallic In(III)/Na(I) complexes were found to be active single-component catalysts for the copolymerization of carbon dioxide (CO2) with cyclohexene oxide (CHO). Noteworthily, In/Na chloro complex 1 has been shown to give high copolymerization selectivity possessing >99% carbonate repeated units for CO2-derived poly(cyclohexene carbonate) production and displayed a turnover number of >1400 under the optimized conditions. Apart from the CO2/CHO copolymerization, the same complex was capable of mediating the CO2-copolymerization of 4-vinyl-1,2-cyclohexene oxide or cyclopentene oxide to deliver the related CO2-based polycarbonates. To the best of our knowledge, complex 1 in this work appears to be the first example of In/Na halide complex-promoted CO2/epoxide copolymerization that enabled the generation of aliphatic polycarbonates with good productivity and high product selectivity.
Collapse
Affiliation(s)
- Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Hsin Chuang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Nakajima T, Kotani M, Maeda Y, Sato M, Iwai K, Tanase T. Unsymmetric Ir 2 and RhIr Dinuclear Complexes Supported by a Linear Tetraphosphine meso-dpmppp, Showing High Reactivity for O 2, H 2, and HCl. Inorg Chem 2024; 63:19847-19863. [PMID: 39377495 DOI: 10.1021/acs.inorgchem.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Unsymmetric dinuclear Ir(I) complexes, [Ir2Cl2(L)(meso-dpmppp)] (L = XylNC (1aIr2), tBuNC (1bIr2), CO (1cIr2)), were synthesized using meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), which supports cis-P,P (M1) and trans-P,P (M2) metal sites, and exhibited high reactivity for O2, H2, and HCl. The IrRh heterodinuclear complexes, [M1M2Cl2(L)(meso-dpmppp)] (1xM1M2) (M1M2 = IrRh, RhIr; L = XylNC, CO (x = a, c)), were also synthesized and used together with the Rh2 complexes (1a,cRh2) to elucidate the role of each metal site. For the reactions of O2, 1aIr2 and 1aRhIr showed higher reactivity than those of 1aIrRh and 1aRh2, giving η2-peroxide complexes [{M1Cl2}{M2(η2-O2)(XylNC)}(meso-dpmppp)] (2aIr2, 2aRhIr), from which O2 would not dissociate. All the CO complexes 1cM1M2 (M1, M2 = Ir or Rh) showed no reactivity for O2. In the reactions with H2, 1aIr2 reacted with H2 to give the dihydride complex, [{IrCl2}{Ir(H)2L}(meso-dpmppp)] (11aIr2) and the tetrahydride complex, [{Ir(H)Cl2}(μ-H){Ir(H)2L}(meso-dpmppp)] (12aIr2), while 1aRhIr gave the dihydride complex, and 1aIrRh and 1aRh2 gave no hydride complexes. Reactions of 1a,cM1M2 with HCl afforded the dihydride complexes, [{IrCl3}(μ-H){Ir(H)Cl(XylNC)}(meso-dpmppp)] (14aIr2), [{Ir(H)Cl2}(μ-H){M2Cl2(L)}(meso-dpmppp)] (M2 = Ir, L = CO (15cIr2); M2 = Rh, L = XylNC (15aIrRh), CO (15cIrRh)), and [{Rh(H)Cl2}(μ-Cl){Ir(H)Cl(XylNC)}(meso-dpmppp)] (18aRhIr), the structures varying depending on M1 and M2 as well as L.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Momoko Kotani
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Yuki Maeda
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Miwa Sato
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Kento Iwai
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Tomoaki Tanase
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| |
Collapse
|
4
|
Akita R, Matsuoka SI. Highly Tolerant Living/Controlled Anionic Polymerization of Dialkyl Acrylamides Enabled by Zinc Triflate/Phosphine Lewis Pair. ACS Macro Lett 2024; 13:1272-1278. [PMID: 39283320 DOI: 10.1021/acsmacrolett.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Living polymerizations of polar vinyl monomers have been successful for decades. However, they still suffer the following challenges: fast propagation, air-moisture tolerance, and negligible side reactions even at elevated temperatures. Here, we developed an unprecedented polymerization that overcomes these limitations using a Lewis pair catalyst. The anionic polymerization of dialkyl acrylamides proceeded in a living/controlled matter using Zn(OTf)2/PPh3 within a wide temperature range of 25-100 °C for short times (1-10 min) even under open-air conditions. The recovery and reuse of Zn(OTf)2 without loss of polymerization activity were observed to be possible. The polymerization was retarded by excess Zn(OTf)2, the additive methanol, and water, indicating equilibriums of the propagating species with them. The putative propagating zinc triflate-ate complex was tolerant to the protic additives and significantly selective for the propagation.
Collapse
Affiliation(s)
- Riki Akita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Shin-Ichi Matsuoka
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
5
|
Ding Y, Yang Y, Huo K, Li Y, Wang J, Himeda Y, Wang WH, Bao M. Hydrogenation of CO 2 to formate catalyzed by a Ru catalyst supported on a copolymerized porous organic polymer. Dalton Trans 2024; 53:14839-14847. [PMID: 39171620 DOI: 10.1039/d4dt01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The catalytic hydrogenation of carbon dioxide to formate is of great interest due to its significant role in CO2 utilization. In this study, a novel heterogeneous Ru(III) catalyst was prepared by immobilizing RuCl3 on a porous organic polymer (POP) obtained from 1,4-phthalaldehyde (PTA) and 4,4'-biphenyldicarboxaldehyde (BPDA) with melamine. A copolymerization strategy utilizing monomers of varying lengths was employed to prepare the POP-supported Ru catalyst with adjustable porosity. The optimization of the framework porosity resulted in enhanced CO2 affinity, accelerated mass transfer, and a remarkable enhancement in catalytic activity. A high turnover number (TON) of 2458 was achieved for the CO2 hydrogenation to formate in 2 h with catalyst Cat-3 under 3 MPa (CO2/H2 = 1 : 1) at 120 °C in 1 M Et3N aqueous solution. Moreover, the Cat-3 demonstrated good recyclability and was able to be reused for five consecutive runs, resulting in a high total TON of 9971.
Collapse
Affiliation(s)
- Yang Ding
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Ganjingzi District, Dalian, China.
| | - Yuxuan Yang
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
| | - Kefan Huo
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
| | - Yang Li
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Ganjingzi District, Dalian, China.
| | - Jiasheng Wang
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Ganjingzi District, Dalian, China.
| | - Yuichiro Himeda
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Wan-Hui Wang
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Ganjingzi District, Dalian, China.
| | - Ming Bao
- School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Ganjingzi District, Dalian, China.
| |
Collapse
|
6
|
Yu Y, Ren BH, Liu Y, Lu XB. Chemical Recycling of Poly(cyclohexene carbonate)s via Synergistic Catalysis. ACS Macro Lett 2024; 13:1099-1104. [PMID: 39132974 DOI: 10.1021/acsmacrolett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Chemical recycling of polymers to the corresponding monomers offers a valuable solution to address the current plastics crisis for creating an ideal and circular polymer economy. Here, we present a bimetallic synergistic depolymerization of the widely studied CO2-based polycarbonates, poly(cyclohexene carbonate)s, to epoxide monomers efficiently. The bimetallic CrIII-complex-mediated highly selective depolymerization and repolymerization was achieved via the regulation of reaction temperature, thus closing the circular loop of poly(cyclohexene carbonate)s in situ. Mechanistic investigation has revealed that the formation of epoxides undergoes a direct chain-end unzipping process. A bimetallic catalysis involving a nucleophilic attack of the metal-alkoxide species toward the methine carbon atom bound with an adjacent carbonyl that is activated by the other metal center features a lower energy barrier in DFT calculations, which promotes the epoxide extrusion.
Collapse
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
7
|
Sun Y, Zhang C, Zhang X. O/S Exchange Reaction in Synthesizing Sulfur-Containing Polymers. Chemistry 2024; 30:e202401684. [PMID: 38802324 DOI: 10.1002/chem.202401684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Using carbon disulfide (CS2) and carbonyl sulfide (COS) as sulfur-containing and one-carbon feedstocks to make value-added products is paramount for both pure and applied chemistry and environmental science. One of the practical strategies is to copolymerize these bulk chemicals with epoxides to produce sulfur-containing polymers. This approach contributes to improving the sustainability of polymer manufacturing, provides highly desired functional polymer materials, and has attracted much attention. However, these copolymerizations invariably exhibit the intensely complicated chemistry of O/S exchange reaction, leading to sulfur-containing polymers with diverse architectures. As the understanding of O/S exchange continues to deepen, recent efforts have guided significant advances in the synthesis of CS2- and COS-based polymers. This review examines the O/S exchange chemistry and summarizes the recent progress in this field to promote the further advance of synthesizing sulfur-containing polymers from CS2 and COS.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Wu X, Zhang W, Ding H, Wen Y, Guo K, Duan Z, Liu B. Construction of Polycarbonates with Pendant Multifunctional Groups via a One-Step CO 2/ Diepoxide Copolymerization Approach. Biomacromolecules 2024; 25:2925-2933. [PMID: 38691827 DOI: 10.1021/acs.biomac.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.
Collapse
Affiliation(s)
- Xianmin Wu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Wei Zhang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750026, China
| | - Huining Ding
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yeqian Wen
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Kening Guo
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhongyu Duan
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
9
|
Wu D, Martin RT, Piña J, Kwon J, Crockett MP, Thomas AA, Gutierrez O, Park NH, Hedrick JL, Campos LM. Cyclopropenimine-Mediated CO 2 Activation for the Synthesis of Polyurethanes and Small-Molecule Carbonates and Carbamates. Angew Chem Int Ed Engl 2024; 63:e202401281. [PMID: 38462499 PMCID: PMC11078573 DOI: 10.1002/anie.202401281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Carbon dioxide (CO2) is an abundant C1 feedstock with tremendous potential to produce versatile building blocks in synthetic applications. Given the adverse impact of CO2 on the atmosphere, it is of paramount importance to devise strategies for upcycling it into useful materials, such as polymers and fine chemicals. To activate such stable molecule, superbases offer viable modes of binding to CO2. In this study, a superbase cyclopropenimine derivative was found to exhibit exceptional proficiency in activating CO2 and mediating its polymerization at ambient temperature and pressure for the synthesis of polyurethanes. The versatility of this reaction can be extended to monofunctional amines and alcohols, yielding a variety of functional carbonates and carbamates.
Collapse
Affiliation(s)
- Dino Wu
- Department of Chemistry, Columbia University, 10027 New York, NY, USA
| | - Robert T. Martin
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, 20742 Maryland, MD, USA
| | - Jeanette Piña
- Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, 77843 College Station, TX, USA
| | - Junho Kwon
- Department of Chemistry, Columbia University, 10027 New York, NY, USA
| | - Michael P. Crockett
- Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, 77843 College Station, TX, USA
| | - Andy A. Thomas
- Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, 77843 College Station, TX, USA
| | - Osvaldo Gutierrez
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, 20742 Maryland, MD, USA
- Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, 77843 College Station, TX, USA
| | | | | | - Luis M. Campos
- Department of Chemistry, Columbia University, 10027 New York, NY, USA
| |
Collapse
|
10
|
Liu K, Du L, Wang T. Coordination Synergy between Iridium Photosensitizers and Metal Nanoclusters Leading to Enhanced CO 2 Cycloaddition under Mild Conditions. Inorg Chem 2024; 63:4614-4627. [PMID: 38422546 DOI: 10.1021/acs.inorgchem.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The achievement of photocatalytic CO2 and epoxide cycloaddition under mild conditions such as room temperature and atmospheric pressure is important for green chemistry, which can be achieved by developing coordination synergies between catalysts and photosensitizers. In this context, we exploit the use of coordinate bonds to connect pyridine-appended iridium photosensitizers and catalysts for CO2 cycloaddition, which is systematically demonstrated by 1H nuclear magnetic resonance titration and X-ray photoelectron spectroscopic measurements. It is shown that the hybrid Ir(Cltpy)2/Mn2Cd4 photocatalytic system with coordination synergy exhibits excellent catalytic performance (yield ≈ 98.2%), which is 3.75 times higher than that of the comparative Ir(Cltpy-Ph)2/Mn2Cd4 system without coordination synergy (yield ≈ 26.2%), under mild conditions. The coordination between the Mn2Cd4 catalyst and the Ir(Cltpy)2 photosensitizer enhances the light absorption and photoresponse properties of the Mn2Cd4 catalyst. This has been confirmed through transient photocurrent, electrochemical impedance, and electron paramagnetic tests. Consequently, the efficiency of cycloaddition was enhanced by utilizing mild conditions.
Collapse
Affiliation(s)
- Kelong Liu
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Longchao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Tingting Wang
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
11
|
Hsu HF, Liu GL, Su YC, Ko BT. Bimetallic nickel complexes containing imidazole-based phenolate ligands as efficient catalysts for the copolymerization of carbon dioxide with epoxides. Dalton Trans 2023; 53:299-314. [PMID: 38047477 DOI: 10.1039/d3dt03084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The utilization of hexadentate imidazole-derived diamine-bisphenolate ligands to construct structurally well-defined bimetallic nickel catalysts that enable the mediation of the copolymerization of carbon dioxide with alicyclic epoxides was reported for the first time. A series of dinickel carboxylate/nitrophenolate complexes were facilely prepared through a one-pot procedure and their structures were fully determined by single crystal X-ray structural analysis. Dinickel complexes 1-10 were used as single-component catalysts, and were evaluated for the copolymerization of CO2 and cyclohexene oxide (CHO), for which acetato-incorporated complex 1 was proved to exhibit the best activity. Not only has the controllability of binickel catalyst 1 for CO2/CHO copolymerization been demonstrated, but also an "immortal" character for the same polymerization has been realized. Furthermore, detailed kinetic studies of polymerization catalysis of this type were undertaken, and the kinetics results revealed a first-order dependence on both Ni complex 1 and CHO concentrations. This is a successful example of the introduction of the easily accessible nitrogen-heterocycle group, the imidazole moiety, into phenolate ligands for the development of high-performance homogeneous catalysts towards the bimetallic complex-catalyzed copolymerization of CO2 and epoxides.
Collapse
Affiliation(s)
- Han-Fang Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
12
|
Ni K, Dawe LN, Sarjeant AA, Kozak CM. Controlled synthesis of polycarbonate diols and their polylactide block copolymers using amino-bis(phenolate) chromium hydroxide complexes. Dalton Trans 2023; 52:17249-17257. [PMID: 37966801 DOI: 10.1039/d3dt03168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A diamine-bis(phenolate) chromium(III) complex, CrOH[L] ([L] = dimethylaminoethylamino-N,N-bis(2-methylene-4,6-tert-butylphenolate)), 2, in the presence of tetrabutylammonium hydroxide effectively copolymerizes CO2 and cyclohexene oxide (CHO) into a polycarbonate diol. The resultant low molar mass (6.3 kg mol-1) diol is used to initiate ring-opening polymerization of rac-lactide with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) giving ABA-type block copolymers with good molar mass control through varying rac-LA-to-diol loadings and with narrow dispersities. As the degree of rac-LA incorporation increases, the glass transition temperatures (Tg) are found to decrease, whereas decomposition temperatures (Td) increase. (Diphenylphosphonimido)triphenylphosphorane (Ph2P(O)NPPh3) was used as a neutral nucleophilic cocatalyst with 2, giving phosphorus-containing polycarbonates with an Mn value of 28.5 kg mol-1, a dispersity of 1.13, a Tg value of 110 °C and a Td value of over 300 °C. A related Cr(III) complex (4) having a methoxyethyl pendent group rather than a dimethylaminoethyl group was structurally characterized as a hydroxide-bridged dimer.
Collapse
Affiliation(s)
- Kaijie Ni
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7, Canada.
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| | - Amy A Sarjeant
- Drug Product Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, USA
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7, Canada.
| |
Collapse
|
13
|
Wei P, Bhat GA, Darensbourg DJ. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate-Based Materials. Angew Chem Int Ed Engl 2023; 62:e202307507. [PMID: 37534963 DOI: 10.1002/anie.202307507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic polycarbonates (aPCs) have become increasingly popular as functional materials due to their biocompatibility and capacity for on-demand degradation. Advances in polymerization techniques and the introduction of new functional monomers have expanded the library of aPCs available, offering a diverse range of chemical compositions and structures. To accommodate the emerging requirements of new applications in biomedical and energy-related fields, various manufacturing techniques have been adopted for processing aPC-based materials. However, a summary of these techniques has yet to be conducted. The aim of this paper is to enrich the toolbox available to researchers, enabling them to select the most suitable technique for their materials. In this paper, a concise review of the recent progress in processing techniques, including controlled self-assembly, electrospinning, additive manufacturing, and other techniques, is presented. We also highlight the specific challenges and opportunities for the sustainable growth of this research area and the successful integration of aPCs in industrial applications.
Collapse
Affiliation(s)
- Peiran Wei
- Soft Matter Facility, Texas A&M University, 1313 Research Parkway, College Station, TX, 77845, USA
| | - Gulzar A Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Luo Y, Chen F, Zhang H, Liu J, Liu N. Catalysis Conversion of Carbon Dioxide and Epoxides by Tetrahydroxydiboron To Prepare Cyclic Carbonates. J Org Chem 2023; 88:15717-15725. [PMID: 37885137 DOI: 10.1021/acs.joc.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A binary catalytic system comprising tetrahydroxydiboron and tetrabutylammonium iodide (TBAI) was used to catalyze the cycloaddition of carbon dioxide (CO2) with epoxides. The tetrahydroxydiboron catalyst (9 mol %), in combination with the use of TBAI (13.5 mol %) as a nucleophile, is capable of catalyzing the cycloaddition of CO2 with various terminal epoxides under room temperature and a CO2 balloon. In addition, a range of internal epoxides, including sterically hindered bicyclic epoxides and vegetable oil-based epoxides, were suitable for the catalytic system, affording a series of cyclic carbonates in moderate to high yields. The tetrahydroxydiboron/TBAI cooperative catalytic mechanism was elucidated using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and electrospray ionization-high-resolution mass spectrometry. Results reveal that the tetrahydroxydiboron catalyst exhibits dual effects, activating both CO2 and epoxides; initially, it underwent the insertion of CO2 to form a boron-CO2 adduct and subsequently activated the epoxides through interaction of the B-O bond.
Collapse
Affiliation(s)
- Yuhui Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
15
|
Sengoden M, Bhat GA, Rutledge RJ, Rashid S, Dar AA, Darensbourg DJ. Micellar catalysis: Polymer bound palladium catalyst for carbon-carbon coupling reactions in water. Proc Natl Acad Sci U S A 2023; 120:e2312907120. [PMID: 37922331 PMCID: PMC10655565 DOI: 10.1073/pnas.2312907120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023] Open
Abstract
Metallosurfactants, defined here as hydrophobic metal-containing groups embedded in hydrophilic units when dispersed in water, emanate in the formation of metallomicelles. This approach continues to attract great interest for its ability to serve as micellar catalysts for various metal-mediated chemical transformations in water. Indeed, relevant to green chemistry, micellar catalysis plays a preeminent function as a replacement for organic solvents in a variety of chemical reactions. There are several methods for the interaction of metal complexes (catalysts or catalyst precursors) and surfactants for producing micellar aggregates. A very effective manner for achieving this involves the direct bonding of the metal center to the amphiphilic polymeric materials. Herein, we describe the synthesis of a metallosurfactant containing a palladium complex covalently incorporated into a CO2-based triblock polycarbonate derived using a dicarboxylic acid chain-transfer agent. This amphiphilic polycarbonate was shown to self-assemble in water to provide uniform and spherical micelles, where the catalytic metal center is located in the hydrophobic portion of the micelle. The resulting metallosurfactant was demonstrated to effectively catalyze carbon-carbon coupling reactions at very low catalyst loadings.
Collapse
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, Texas A & M University, College Station, TX77843
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | - Ryan J. Rutledge
- Department of Chemistry, Texas A & M University, College Station, TX77843
| | - Showkat Rashid
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | - Aijaz A. Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | | |
Collapse
|
16
|
Nagae H, Matsushiro S, Okuda J, Mashima K. Cationic tetranuclear macrocyclic CaCo 3 complexes as highly active catalysts for alternating copolymerization of propylene oxide and carbon dioxide. Chem Sci 2023; 14:8262-8268. [PMID: 37564411 PMCID: PMC10411860 DOI: 10.1039/d3sc00974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
We found that a cationic hetero tetranuclear complex including a calcium and three cobalts exhibited high catalytic activity toward alternating copolymerization of propylene oxide (PO) and carbon dioxide (CO2). The tertiary anilinium salt [PhNMe2H][B(C6F5)4] was the best additive to generate the cationic species while maintaining polymer selectivity and carbonate linkage, even under 1.0 MPa CO2. Density functional theory calculations clarified that the reaction pathway mediated by the cationic complex is more favorable than that mediated by the neutral complex by 1.0 kcal mol-1. We further found that the flexible ligand exchange between Ca and Co ions is important for the alternating copolymerization to proceed smoothly.
Collapse
Affiliation(s)
- Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Saki Matsushiro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University Landoltweg 1 D-52062 Aachen Germany
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
17
|
Grimaldi I, Santulli F, Lamberti M, Mazzeo M. Chromium Complexes Supported by Salen-Type Ligands for the Synthesis of Polyesters, Polycarbonates, and Their Copolymers through Chemoselective Catalysis. Int J Mol Sci 2023; 24:ijms24087642. [PMID: 37108806 PMCID: PMC10144741 DOI: 10.3390/ijms24087642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance. Diblock polycarbonate-polyester copolymers were selectively obtained by one-pot procedures from mixtures of CO2, cyclohexene oxide, and phthalic anhydride with all complexes. In addition, all chromium complexes were revealed to be very active in the chemical depolymerization of polycyclohexene carbonate producing cyclohexene oxide with high selectivity, thus offering the opportunity to close the loop on the life of these materials.
Collapse
Affiliation(s)
- Ilaria Grimaldi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
18
|
Roy SS, Sarkar S, Antharjanam P, Chakraborty D. Ring-opening copolymerization of CO2 with epoxides catalyzed by binary catalysts containing half salen aluminum compounds and quaternary phosphonium salt. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
19
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Sánchez-Barba LF, Tejeda J, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. One-pot terpolymerization of CHO, CO 2 and L-lactide using chloride indium catalysts. Dalton Trans 2023; 52:3482-3492. [PMID: 36843480 DOI: 10.1039/d3dt00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Ring-opening copolymerization reactions of epoxides, carbon dioxide and cyclic esters to produce copolymers is a promising strategy to prepare CO2-based polymeric materials. In this contribution, bimetallic chloride indium complexes have been developed as catalysts for the copolymerization processes of cyclohexene oxide, carbon dioxide and L-lactide under mild reaction conditions. The catalysts displayed good catalytic activity and excellent selectivity towards the preparation of poly(cyclohexene carbonate) (PCHC) at one bar CO2 pressure in the absence of a co-catalyst. Additionally, polyester-polycarbonate copolymers poly(lactide-co-cyclohexene carbonate) (PLA-co-PCHC) were obtained via an one-pot one-step route without the use of a co-catalyst. The degree of incorporation of carbon dioxide can be easily modulated by changing the CO2 pressure and the monomer feed, resulting in copolymers with different thermal properties.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Juan Tejeda
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - José A Castro-Osma
- Universidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| |
Collapse
|
20
|
Sengoden M, Bhat GA, Darensbourg DJ. Sustainable Synthesis of CO 2-Derived Polycarbonates from the Natural Product, Eugenol: Terpolymerization with Propylene Oxide. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar Jammu and Kashmir 190006, India
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Liu Y, Lu XB. Current Challenges and Perspectives in CO 2-Based Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Alroaithi M, Xu W. Nanocomposite of CO 2-Based Polycarbonate Polyol with Highly Exfoliated Nanoclay. ACS OMEGA 2023; 8:5247-5256. [PMID: 36816631 PMCID: PMC9933217 DOI: 10.1021/acsomega.2c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Polypropylene carbonate (PPC) derived from carbon dioxide has been used as a precursor for the synthesis of polyurethane (PU). The high viscosity of the PPC is the key parameter hindering its processability during PU synthesis. Herein, a PPC nanocomposite with highly exfoliated nanoclay was prepared through a solution intercalation process. A wide range of nanoclay concentrations incorporated into the PPC were studied. The impacts of the nanoclay on the PPC were investigated in order to maintain the polymer structure while improving its physical properties. The characterizations of PPC nanocomposites showed that the highly exfoliated nanoclay contributed to a viscosity reduction, and a slight reduction in the molecular weight. The polymer degradation was indicated by the formation of cyclic propylene carbonate. The minimum or critical concentration of nanoclay was found to be between ∼0.5 and 2.0 wt %. Within this range, the polymer degradation is minimal. The PPC nanocomposites with a lower viscosity showed excellent precursors for making PU coating materials. The PU coating derived from the PPC nanocomposite has higher anticorrosive properties in comparison with the non-modified PU coating.
Collapse
|
23
|
Jung HJ, Nyamayaro K, Baalbaki HA, Goonesinghe C, Mehrkhodavandi P. Cooperative Initiation in a Dinuclear Indium Complex for CO 2 Epoxide Copolymerization. Inorg Chem 2023; 62:1968-1977. [PMID: 36688644 DOI: 10.1021/acs.inorgchem.2c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dinuclear indium complexes have been synthesized and characterized. These include neutral and cationic indium complexes supported by a Schiff base ligand bearing a binaphthol linker. The new compounds were investigated for alternating copolymerization of CO2 and cyclohexene oxide. In particular, the neutral indium chloride complex (±)-[(ONapNiN)InCl2]2 (4) showed high conversion of cyclohexene oxide and selectivity for poly(cyclohexene carbonate) formation without cocatalysts at 80 °C under various CO2 pressures (2-30 bar). Importantly, the reactivity of the dinuclear indium chloride complex 4 is drastically different from that of the mononuclear indium chloride complex (±)-(NNiOtBu)InCl2 (5), suggesting a cooperative initiation mechanism involving the two indium centers in 4.
Collapse
Affiliation(s)
- Hyuk-Joon Jung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Hassan A Baalbaki
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
24
|
Michelas M, Redjel YK, Daran JC, Benslimane M, Poli R, Fliedel C. Cobalt(II) and cobalt(III) complexes of tripodal tetradentate diamino-bis(phenolate) ligands: Synthesis, characterization, crystal structures and evaluation in radical polymerization processes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
26
|
Ullah Khan M, Ullah Khan S, Cao X, Usman M, Yue X, Ghaffar A, Hassan M, Zhang C, Zhang X. Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity. Chem Asian J 2023; 18:e202201050. [PMID: 36342176 DOI: 10.1002/asia.202201050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Indexed: 11/09/2022]
Abstract
This study demonstrates the superiority of a stable and well-defined heterogeneous cobalt hexacyanocobaltate (Co3 [Co(CN)6 ]2 ), a typical cobalt Prussian Blue Analogue (CoCo-PBA) that catalyzes the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO) to produce poly(propylene monothiocarbonate)s (PPMTC). The number-average molecular weights of the PPMTC were 66.4 to 139.4 kg/mol, with a polydispersity of 2.0-3.9. The catalyst productivity reached 1040 g polymer/g catalyst (12.0 h). The oxygen-sulfur exchange reaction (O/S ER), which would generate random thiocarbonate and carbonate units, was effectively suppressed, and thus the selectivity of the monothiocarbonate over carbonate linkages was up to >99%. It was shown that no cyclic thiocarbonate byproduct was produced during the heterogeneous catalysis of COS/PO copolymerization using CoCo-PBA as the catalyst. The content of monothiocarbonate and ether units in the copolymer chain could be regulated by tuning the feeding amount of COS.
Collapse
Affiliation(s)
- Munir Ullah Khan
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Xiaohan Cao
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Muhammad Usman
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xinchen Yue
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Abdul Ghaffar
- Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China
| | - Muhammad Hassan
- Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China
| | - Chengjian Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xinghong Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China.,Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 030013, Shanxi, P. R. China
| |
Collapse
|
27
|
Zhang C, Geng X, Zhang X, Gnanou Y, Feng X. Alkyl Borane-Mediated Metal-Free Ring-Opening (Co)Polymerizations of Oxygenated Monomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Sengoden M, Bhat GA, Darensbourg DJ. Bifunctional organoboron-phosphonium catalysts for coupling reactions of CO 2 and epoxides. RSC Adv 2022; 12:32440-32447. [PMID: 36425720 PMCID: PMC9661183 DOI: 10.1039/d2ra06358a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 08/15/2023] Open
Abstract
Recent years have witnessed intensive research activity in exploring novel metal-free organocatalysts for catalyzing the coupling reactions of CO2 and epoxides to afford cyclic or polymeric carbonates. In this direction, herein we report a series of boron-phosphonium organocatalysts for catalyzing the coupling reactions of CO2 and epoxides. These organophosphonium catalysts were synthesized in high yields by following a two step protocol involving Menschutkin and hydroboration reactions in succession. The purity of these organocatalysts was confirmed by spectroscopic techniques like 1H, 13C and 31P NMR, and molecular structures were confirmed by single crystal X-ray diffraction studies. We have also demonstrated that these bifunctional organoboron-phosphonium catalysts are comparatively much less hygroscopic compared to the analogus ammonium catalysts. These phosphonium organocatalysts were shown to catalyze the copolymerization of CO2 and cyclohexene oxide or vinyl cyclohexene oxide to provide polycarbonates with >99% polymer selectivity and carbonate linkages. The coupling reactions of aliphatic epoxides such as PO, having lower energy barrier to cycloaddition formation compared to alicyclic epoxides, preferentially provided cyclic carbonates in good yields. It was demonstrated that these organoboron-phosphonium catalysts are sensitive to chain transfer agents like water, and hence are deactivated in its presence. This is opposite to what is observed for metal based catalysts for these transformations, where water serves as a precursor to the chain-transfer agent diols.
Collapse
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, Texas A&M University, College Station Texas 77843 USA
| | - Gulzar A Bhat
- Centre for Interdiciplinary Research and Innovations, University of Kashmir Srinagar Jammu and Kashmir 190006 India
| | | |
Collapse
|
29
|
Qiu LQ, Yao X, Zhang YK, Li HR, He LN. Advancements and Challenges in Reductive Conversion of Carbon Dioxide via Thermo-/Photocatalysis. J Org Chem 2022; 88:4942-4964. [PMID: 36342846 DOI: 10.1021/acs.joc.2c02179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon dioxide (CO2) is the major greenhouse gas and also an abundant and renewable carbon resource. Therefore, its chemical conversion and utilization are of great attraction for sustainable development. Especially, reductive conversion of CO2 with energy input has become a current hotspot due to its ability to access fuels and various important chemicals. Nowadays, the controllable CO2 hydrogenation to formic acid and alcohols using sustainable H2 resources has been regarded as an appealing solution to hydrogen storage and CO2 accumulation. In addition, photocatalytic CO2 reduction to CO also provides a potential way to utilize this greenhouse gas efficiently. Besides direct CO2 hydrogenation, CO2 reductive functionalization integrates CO2 reduction with subsequent C-X (X = N, S, C, O) bond formation and indirect transformation strategies, enlarging the diverse products derived from CO2 and promoting CO2 reductive conversion into a new stage. In this Perspective, the progress and challenges of CO2 reductive conversion, including hydrogenation, reductive functionalization, photocatalytic reduction, and photocatalytic reductive functionalization are summarized and discussed along with the key issues and future trends/directions in this field. We hope this Perspective can evoke intense interest and inspire much innovation in the promise of CO2 valorization.
Collapse
Affiliation(s)
- Li-Qi Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Kang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Ru Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Teng YQ, Liu Y, Lu XB. Simple Trivalent Cobalt Complex-Mediated Copolymerization of Epoxides with Isocyanate: Combining High Activity and Selectivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Qiang Teng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Deacy AC, Phanopoulos A, Lindeboom W, Buchard A, Williams CK. Insights into the Mechanism of Carbon Dioxide and Propylene Oxide Ring-Opening Copolymerization Using a Co(III)/K(I) Heterodinuclear Catalyst. J Am Chem Soc 2022; 144:17929-17938. [PMID: 36130075 PMCID: PMC9545154 DOI: 10.1021/jacs.2c06921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
A combined computational
and experimental investigation
into the
catalytic cycle of carbon dioxide and propylene oxide ring-opening
copolymerization is presented using a Co(III)K(I) heterodinuclear
complex (DeacyA. C.Co(III)/Alkali-Metal(I) Heterodinuclear
Catalysts for the Ring-Opening Copolymerization of CO2 and
Propylene Oxide. 2020, 142( (45), ), 19150−1916033108736). The complex
is a rare example of a dinuclear catalyst, which is active for the
copolymerization of CO2 and propylene oxide, a large-scale
commercial product. Understanding the mechanisms for both product
and byproduct formation is essential for rational catalyst improvements,
but there are very few other mechanistic studies using these monomers.
The investigation suggests that cobalt serves both to activate propylene
oxide and to stabilize the catalytic intermediates, while potassium
provides a transient carbonate nucleophile that ring-opens the activated
propylene oxide. Density functional theory (DFT) calculations indicate
that reverse roles for the metals have inaccessibly high energy barriers
and are unlikely to occur under experimental conditions. The rate-determining
step is calculated as the ring opening of the propylene oxide (ΔGcalc† = +22.2 kcal mol–1); consistent with experimental measurements (ΔGexp† = +22.1 kcal mol–1, 50 °C). The calculated barrier to the selectivity
limiting step, i.e., backbiting from the alkoxide intermediate to
form propylene carbonate (ΔGcalc† = +21.4 kcal mol–1), is competitive
with the barrier to epoxide ring opening (ΔGcalc† = +22.2 kcal mol–1) implicating an equilibrium between alkoxide and carbonate intermediates.
This idea is tested experimentally and is controlled by carbon dioxide
pressure or temperature to moderate selectivity. The catalytic mechanism,
supported by theoretical and experimental investigations, should help
to guide future catalyst design and optimization.
Collapse
Affiliation(s)
- Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Andreas Phanopoulos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 OBZ, U.K
| | - Wouter Lindeboom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Antoine Buchard
- Department of Chemistry, Centre for Sustainable and Circular Technologies, University of Bath, Bath BA2 7AY, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
32
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO
2
for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207746. [DOI: 10.1002/anie.202207746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
33
|
Schaefer J, Zhou H, Lee E, Lambic NS, Culcu G, Holtcamp MW, Rix FC, Lin TP. Tertiary and Quaternary Phosphonium Borane Bifunctional Catalysts for CO 2/Epoxide Copolymerization: A Mechanistic Investigation Using In Situ Raman Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan Schaefer
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Hua Zhou
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Eryn Lee
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Nikola S. Lambic
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Gursu Culcu
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Matthew W. Holtcamp
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Francis C. Rix
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Tzu-Pin Lin
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| |
Collapse
|
34
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO
2
‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022; 61:e202208355. [DOI: 10.1002/anie.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Peiran Wei
- Soft Matter Facility Texas A&M University 1313 Research Parkway College Station, TX 77845 USA
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations University of Kashmir Srinagar, Jammu and Kashmir 190006 India
| | - Ciera E. Cipriani
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Hamza Mohammad
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Krista Schoonover
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Emily B. Pentzer
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Donald J. Darensbourg
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| |
Collapse
|
35
|
Mbabazi R, Wendt OF, Allan Nyanzi S, Naziriwo B, Tebandeke E. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
36
|
Liu GL, Ko BT. Alternating copolymerization of carbon dioxide with alicyclic epoxides using bimetallic nickel(II) complex catalysts containing benzotriazole-based salen-type derivatives: Catalysis and kinetics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Lidston CAL, Severson SM, Abel BA, Coates GW. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Claire A. L. Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Sarah M. Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Brooks A. Abel
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
38
|
Mao H, Chen C, Guo L, Rwei S. Tunable shape memory property polyurethane with high glass transition temperature composed of polycarbonate diols. J Appl Polym Sci 2022. [DOI: 10.1002/app.52986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hsu‐I Mao
- Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei Taiwan
| | - Chin‐Wen Chen
- Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei Taiwan
| | - Li‐Yin Guo
- Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei Taiwan
| | - Syang‐Peng Rwei
- Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
39
|
Li MJ, Su YC, Liu GL, Ko BT. Dinuclear Nickel Complexes Using Hexadentate Benzothiazole-Based Diamine-Bisphenolate Ligands: Highly Active Catalysts for Copolymerization of Carbon Dioxide with Epoxides. Inorg Chem 2022; 61:12835-12846. [PMID: 35925764 DOI: 10.1021/acs.inorgchem.2c01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We reported for the first time the utilization of hexadentate benzothiazole-based diamine-bisphenolate ligands to synthesize structurally well-characterized dinickel dicarboxylate complexes and studied their catalysis for copolymerization of carbon dioxide with epoxides. Dinickel carboxylate complexes having a 1,3-diamine-bridged backbone were demonstrated to be high-performance catalysts for alternating copolymerization of CO2 and cyclohexene oxide (CHO) with high product selectivity. Particularly, acetate-supported nickel complex 2 enabled us to promote such CO2-copolymerization of this kind with a maximum turnover frequency of up to 2600 h-1 and gave good molecular weight controllability under high-pressure conditions. It is worth noting that bimetallic Ni catalyst 2 was also capable of mediating the catalytic CO2-polymerization of alicyclic epoxides at atmospheric pressure. Kinetic investigations of CO2/CHO copolymerization by 2 allowed us to determine the rate equation of -d[CHO]/dt = kp[2]1[CHO]1, and such catalysis exhibited a first-order dependence on both dinickel complex and CHO concentrations.
Collapse
Affiliation(s)
- Mu-Jia Li
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
40
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | | | | | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
41
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO2‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peiran Wei
- Texas A&M University College Station: Texas A&M University Soft Matter Facility UNITED STATES
| | - Gulzar A. Bhat
- University of Kashmir Centre for Interdisciplinary Research and Innovations INDIA
| | - Ciera E. Cipriani
- Texas A&M University College Station: Texas A&M University Department of Materials Science and Engineering UNITED STATES
| | - Hamza Mohammad
- Texas A&M University College Station: Texas A&M University Department of Chemistry, UNITED STATES
| | - Krista Schoonover
- Texas A&M University College Station: Texas A&M University Department of Chemistry UNITED STATES
| | - Emily B. Pentzer
- Texas A&M University College Station: Texas A&M University Department of Chemistry and Department of Materials Science and Engineering UNITED STATES
| | | |
Collapse
|
42
|
Hsu S, Chen H, Hung Y, Li Y, Liu G, Ko B, Lin C. Preparation and characterization of Schiff base nickel complexes and their application in the coupling reaction of cyclohexene oxide and carbon dioxide. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shih‐Hsien Hsu
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Hung‐Chih Chen
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Yu‐Ching Hung
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Yi‐Xuan Li
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Guan‐Lin Liu
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Bao‐Tsan Ko
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Chu‐Chieh Lin
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| |
Collapse
|
43
|
Lu XB, Ren BH. Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Fan C, Lu S, Ge Q, Lin S, Pan Q. Controllable synthesis of
CO
2
‐based poly(carbonate‐ether)diols catalyzed by
Salen–cobalt
complex. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chaogang Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou People's Republic of China
| | - Shujuan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou People's Republic of China
| | - Qingyun Ge
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou People's Republic of China
| | - Shaohui Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou People's Republic of China
| | - Qinmin Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou People's Republic of China
| |
Collapse
|
46
|
Niknam F, Capaccio V, Kleybolte M, Lamparelli DH, Winnacker M, Fiorani G, Capacchione C. [OSSO]-Type Chromium(III) Complexes for the Reaction of CO 2 with Epoxides. Chempluschem 2022; 87:e202200038. [PMID: 35471596 DOI: 10.1002/cplu.202200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Indexed: 11/11/2022]
Abstract
In this work, four new mononuclear Cr(III) complexes (2-5) bearing bis-thioether-diphenolate, [OSSO]-type ligands, were synthesized and characterized. These complexes in combination with bis(triphenylphosphine)iminium chloride (PPNCl) promoted the coupling of CO2 with epoxides. Depending on the type of substrate and the conditions, the reaction results in the selective formation of either polycarbonate or cyclic carbonate. For example, the reactions in the presence of complex 2 led to the exclusive formation of poly(cyclohexene carbonate, PCHC) from cyclohexene oxide (CHO) (TOF up to 39 h-1 , at T=45-100 °C, time=24 h, pCO2 =20 bar, epoxide/2 (mol/mol)=1000, and PPNCl/2=0.5-2.0 mol %). Under the same conditions and PPNCl/2=0.5-5.0 mol %, the reactions of CO2 with styrene oxide (SO), epichlorohydrin (ECH), 1,2 epoxydodecane (EDD), and allyl glycidyl ether (AGE) have shown selective conversion to the corresponding cyclic carbonates (TOF up to 41 h-1 ).
Collapse
Affiliation(s)
- Fatemeh Niknam
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II n°132, 84184, Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126, Bari (BA), Italy
| | - Vito Capaccio
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II n°132, 84184, Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126, Bari (BA), Italy
| | - Magdalena Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching bei München, Germany
- Catalysis Research Center (CRC), Technische Universität München, Ernst-Otto-Fischer-Straße 1, 85748, Garching bei München, Germany
| | - David H Lamparelli
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II n°132, 84184, Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126, Bari (BA), Italy
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching bei München, Germany
- Catalysis Research Center (CRC), Technische Universität München, Ernst-Otto-Fischer-Straße 1, 85748, Garching bei München, Germany
| | - Giulia Fiorani
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Via Torino 155, 30172, Venezia (VE), Italy
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II n°132, 84184, Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126, Bari (BA), Italy
| |
Collapse
|
47
|
Samouei H, Reibenspies JH, Darensbourg DJ. Studies of the Interactions of the Tungsten Pentacarbonyl Fluoride Anion with Carbon Dioxide. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Reis NV, Deacy AC, Rosetto G, Durr CB, Williams CK. Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) Complexes for the Ring Opening Copolymerization of Carbon Dioxide/Epoxide and Anhydride/Epoxide. Chemistry 2022; 28:e202104198. [PMID: 35114048 PMCID: PMC9306976 DOI: 10.1002/chem.202104198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/07/2022]
Abstract
The catalysed ring opening copolymerizations (ROCOP) of carbon dioxide/epoxide or anhydride/epoxide are controlled polymerizations that access useful polycarbonates and polyesters. Here, a systematic investigation of a series of heterodinuclear Mg(II)M(II) complexes reveals which metal combinations are most effective. The complexes combine different first row transition metals (M(II)) from Cr(II) to Zn(II), with Mg(II); all complexes are coordinated by the same macrocyclic ancillary ligand and by two acetate co-ligands. The complex syntheses and characterization data, as well as the polymerization data, for both carbon dioxide/cyclohexene oxide (CHO) and endo-norbornene anhydride (NA)/cyclohexene oxide, are reported. The fastest catalyst for both polymerizations is Mg(II)Co(II) which shows propagation rate constants (kp ) of 34.7 mM-1 s-1 (CO2 ) and 75.3 mM-1 s-1 (NA) (100 °C). The Mg(II)Fe(II) catalyst also shows excellent performances with equivalent rates for CO2 /CHO ROCOP (kp =34.7 mM-1 s-1 ) and may be preferable in terms of metallic abundance, low cost and low toxicity. Polymerization kinetics analyses reveal that the two lead catalysts show overall second order rate laws, with zeroth order dependencies in CO2 or anhydride concentrations and first order dependencies in both catalyst and epoxide concentrations. Compared to the homodinuclear Mg(II)Mg(II) complex, nearly all the transition metal heterodinuclear complexes show synergic rate enhancements whilst maintaining high selectivity and polymerization control. These findings are relevant to the future design and optimization of copolymerization catalysts and should stimulate broader investigations of synergic heterodinuclear main group/transition metal catalysts.
Collapse
Affiliation(s)
- Natalia V Reis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Gloria Rosetto
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Christopher B Durr
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| |
Collapse
|
49
|
Biagini P, Perego C, Po R, Boggioni L, Cozzolino M, Losio S, Flamigni A, Colombo A, Dragonetti C, Fagnani F, Matozzo P, Roberto D. Strategies for tuning the catalytic activity of zinc complexes in the solvent-free coupling reaction of CO2 and cyclohexene oxide. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Tsai HJ, Su YC, Liu GL, Ko BT. Dinuclear Nickel and Cobalt Complexes Containing Biocompatible Carboxylate Derivatives as Effective Catalysts for Coupling of Carbon Dioxide with Epoxides: Synthesis, Characterization, and Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hsin-Jung Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|