1
|
Barr J, Colpaert G, Cadoni E, Madder A. Furan-based (photo)oxidation reactions and their application in nucleic acid and protein targeting. Methods 2023; 218:189-197. [PMID: 37597698 DOI: 10.1016/j.ymeth.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting. The design of effective capture and targeting probes to ensure high ICL yields is discussed and the mechanisms underlying the (photo)chemical oxidation of furan are explained. Furthermore, examples of furan-containing DNAs designed for different applications, including DNA-DNA or DNA-RNA ICL and DNA-peptide/protein targeting, are provided. The paper highlights the advantages of using different oxidative chemical triggers, such as N-bromosuccinimide or singlet oxygen, to offer additional selectivity control over the ICL reaction.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
3
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
4
|
Cadoni E, Pennati F, Muangkaew P, Elskens J, Madder A, Manicardi A. Synthesis and structure-activity relationship of peptide nucleic acid probes with improved interstrand-crosslinking abilities: application to biotin-mediated RNA-pulldown. RSC Chem Biol 2022; 3:1129-1143. [PMID: 36128507 PMCID: PMC9428673 DOI: 10.1039/d2cb00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The development of interstrand-crosslinking (ICL) probes for the covalent targeting of DNA and RNA sequences of interest has been extensively reported in the past decade. However, most of the reactions reported so far induce the formation of a stable adduct that cannot be reverted, thus rendering these chemistries less useful in applications where the reversibility of the reaction is needed for further downstream processing of the targeted and isolated sequences, such as enzymatic amplification steps. In this work, we report on the reversibility of the furan-mediated ICL reaction. ICL formation can be conveniently triggered by either chemical (N-bromo succinimide, NBS) or luminous stimuli (visible light irradiation in presence of a photosensitizer) and quantitative reversion can be achieved by heating the crosslinked sample at 95 °C, while maintaining the structure of the DNA/RNA targets intact. As a proof-of-concept and showing the benefits of the ICL reversibility, we apply furan-mediated ICL to the pulldown of a target RNA strand from cell lysate.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Francesca Pennati
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Patumwan 10330 Bangkok Thailand
| | - Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| |
Collapse
|
5
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
6
|
Sugihara Y, Nakata Y, Yamayoshi A, Murakami A, Kobori A. Inhibition Effect of Photoresponsive α-Haloaldehyde-conjugated Oligonucleotides on the Gene Expression in HeLa Cells Stably Expressing GFP. CHEM LETT 2017. [DOI: 10.1246/cl.170298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yuta Sugihara
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585
| | - Yuki Nakata
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585
| | - Asako Yamayoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501
| | - Akira Murakami
- Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashina-ku, Kyoto 607-8412
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585
| |
Collapse
|
7
|
Sugihara Y, Tatsumi S, Kobori A. Development of Novel Photoresponsive Oligodeoxyribonucleotides with a 2′-O-Diazirine-conjugated Adenosine for DNA Interstrand Crosslinking. CHEM LETT 2017. [DOI: 10.1246/cl.160998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Problems and Solutions in Click Chemistry Applied to Drug Probes. Sci Rep 2016; 6:35579. [PMID: 27782133 PMCID: PMC5080546 DOI: 10.1038/srep35579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/30/2016] [Indexed: 01/24/2023] Open
Abstract
Small-molecule fluorescent probes have been widely used in target identification, but this method has many disadvantages. For example, the identified proteins are usually complex, and additional biochemical studies are needed to distinguish real targets from interference results. To address this problem, we propose a series of strategies for improving the efficiency of target identification. First, pretreatment with a lower concentration of hydrogen peroxide can shield against thiol interference. Second, the use of benzophenone as a photo-affinity group is not appropriate, and diazirines are preferred. Third, if cytoskeleton proteins or stress proteins are captured, the interference must be carefully eliminated. The specificity of target identification can be improved by optimizing these three strategies. In this paper, we discuss the problems associated with the use of the click reaction in living cells and provide important complementary techniques for photo-affinity probes based on the click chemistry reaction.
Collapse
|
9
|
Wang L, Murai Y, Yoshida T, Ishida A, Masuda K, Sakihama Y, Hashidoko Y, Hatanaka Y, Hashimoto M. Alternative one-pot synthesis of (trifluoromethyl)phenyldiazirines from tosyloxime derivatives: application for new synthesis of optically pure diazirinylphenylalanines for photoaffinity labeling. Org Lett 2015; 17:616-9. [PMID: 25588056 DOI: 10.1021/ol503630z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative one-pot synthesis of 3-(trifluoromethyl)-3-phenyldiazirine derivatives from corresponding tosyloximes is developed. The deprotonation of intermediate diaziridine by NH2(-) is a new approach for construction of diazirine. Moreover, a novel synthesis of optically pure (trifluoromethyl)diazirinylphenylalanine derivatives was attempted involving these methods.
Collapse
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nakamoto K, Ueno Y. Diazirine-Containing RNA Photo-Cross-Linking Probes for Capturing microRNA Targets. J Org Chem 2014; 79:2463-72. [DOI: 10.1021/jo402738t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kosuke Nakamoto
- Course of Applied Life Science, Faculty of
Applied Biological Sciences and ‡United Graduate
School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshihito Ueno
- Course of Applied Life Science, Faculty of
Applied Biological Sciences and ‡United Graduate
School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
11
|
Kandeel M, Kitade Y. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference. J Comput Aided Mol Des 2013; 27:605-14. [PMID: 23877830 DOI: 10.1007/s10822-013-9665-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/05/2013] [Indexed: 12/01/2022]
Abstract
RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelshiekh, Egypt.
| | | |
Collapse
|
12
|
Kandeel M, Kitade Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLoS One 2013; 8:e57140. [PMID: 23441235 PMCID: PMC3575500 DOI: 10.1371/journal.pone.0057140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
13
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
14
|
Raindlová V, Pohl R, Hocek M. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chemistry 2012; 18:4080-7. [PMID: 22337599 DOI: 10.1002/chem.201103270] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/06/2022]
Abstract
5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer.
Collapse
Affiliation(s)
- Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
15
|
Dubinsky L, Krom BP, Meijler MM. Diazirine based photoaffinity labeling. Bioorg Med Chem 2011; 20:554-70. [PMID: 21778062 DOI: 10.1016/j.bmc.2011.06.066] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/19/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
Diazirines are among the smallest photoreactive groups that form a reactive carbene upon light irradiation. This feature has been widely utilized in photoaffinity labeling to study ligand-receptor, ligand-enzyme and protein-protein interactions, and in the isolation and identification of unknown proteins. This review summarizes recent advances in the use of diazirines in photoaffinity labeling.
Collapse
Affiliation(s)
- Luba Dubinsky
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | |
Collapse
|
16
|
Ai HW, Shen W, Sagi A, Chen PR, Schultz PG. Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 2011; 12:1854-7. [PMID: 21678540 DOI: 10.1002/cbic.201100194] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 12/16/2022]
Affiliation(s)
- Hui-wang Ai
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|