1
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
3
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
4
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
6
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
7
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Chernyshev VS, Nozdriukhin D, Chuprov-Netochin R, Tsydenzhapova E, Novoselova M, Gorin D, Yashchenok A. Engineered multicompartment vesicosomes for selective uptake by living cells. Colloids Surf B Biointerfaces 2022; 220:112953. [DOI: 10.1016/j.colsurfb.2022.112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
9
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
10
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
11
|
Zhang X, Contini C, Constantinou AP, Doutch JJ, Georgiou TK. How does the hydrophobic content of methacrylate
ABA
triblock copolymers affect polymersome formation? JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xinmo Zhang
- Department of Materials Royal School of Mines Exhibition Road London SW7 2AZ UK
| | - Claudia Contini
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna P. Constantinou
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London 82 Wood Lane London W12 0BZ UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot UK
| | - Theoni K. Georgiou
- Department of Materials Royal School of Mines Exhibition Road London SW7 2AZ UK
| |
Collapse
|
12
|
Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021; 21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
How to precisely detect and effectively cure cancer which is defined as precise nanomedicine has drawn great attention worldwide. Polymeric nanoreactors which can in situ catalyze inert species into activated ones, can greatly increase imaging quality and enhance therapeutic effects along with decreased background interference and reduced serious side effects. After a brief introduction, the design and preparation of polymeric nanoreactors are discussed from the following aspects, that is, solvent-switch, pH-tuning, film rehydration, hard template, electrostatic interaction, and polymerization-induced self-assembly (PISA). Subsequently, the biomedical applications of these nanoreactors in the fields of cancer imaging, cancer therapy, and cancer theranostics are highlighted. The last but not least, conclusions and future perspectives about polymeric nanoreactors are given. It is believed that polymeric nanoreactors can bring a great opportunity for future fabrication and clinical translation of precise nanomedicine.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaopeng Zhao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Runkai Lv
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linhui Hao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xikuang Yao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
13
|
Wu M, Wang Y, Yan N, Jin J, Han Y, Jiang W. Self-Assembly of Polymeric Nanovesicles into Hierarchical Supervesicles and Its Application in Selectable Multicompartmental Encapsulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
14
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
15
|
Nayanathara U, Kermaniyan SS, Such GK. Multicompartment Polymeric Nanocarriers for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000298. [PMID: 32686228 DOI: 10.1002/marc.202000298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Multicompartment polymeric nanocarriers which mimic the compartmentalized architecture of living cells have received considerable research attention in the biomedical field. The advancement of synthetic polymeric chemistry has allowed multicompartment polymeric nanocarriers to be tailored for biomedical applications such as drug delivery, encapsulated catalysis, and artificial cellular mimics. In this review, polymer-based multicompartment nanocarriers (multicompartment micelles, multicompartment polymersomes, and capsosomes) have been discussed. This review focuses on multicompartment systems applied to biomedical applications over the last ten years. The synthetic procedures and structural properties that impact the specific application are also highlighted.
Collapse
Affiliation(s)
- Umeka Nayanathara
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah S Kermaniyan
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
16
|
Wang L, Song S, van Hest J, Abdelmohsen LKEA, Huang X, Sánchez S. Biomimicry of Cellular Motility and Communication Based on Synthetic Soft-Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907680. [PMID: 32250035 DOI: 10.1002/smll.201907680] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Cells, sophisticated membrane-bound units that contain the fundamental molecules of life, provide a precious library for inspiration and motivation for both society and academia. Scientists from various disciplines have made great endeavors toward the understanding of the cellular evolution by engineering artificial counterparts (protocells) that mimic or initiate structural or functional cellular aspects. In this regard, several works have discussed possible building blocks, designs, functions, or dynamics that can be applied to achieve this goal. Although great progress has been made, fundamental-yet complex-behaviors such as cellular communication, responsiveness to environmental cues, and motility remain a challenge, yet to be resolved. Herein, recent efforts toward utilizing soft systems for cellular mimicry are summarized-following the main outline of cellular evolution, from basic compartmentalization, and biological reactions for energy production, to motility and communicative behaviors between artificial cell communities or between artificial and natural cell communities. Finally, the current challenges and future perspectives in the field are discussed, hoping to inspire more future research and to help the further advancement of this field.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Shidong Song
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jan van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
17
|
Abstract
In nature, various specific reactions only occur in spatially controlled environments. Cell compartment and subcompartments act as the support required to preserve the bio-specificity and functionality of the biological content, by affording absolute segregation. Inspired by this natural perfect behavior, bottom-up approaches are on focus to develop artificial cell-like structures, crucial for understanding relevant bioprocesses and interactions or to produce tailored solutions in the field of therapeutics and diagnostics. In this review, we discuss the benefits of constructing polymer-based single and multicompartments (capsules and giant unilamellar vesicles (GUVs)), equipped with biomolecules as to mimic cells. In this respect, we outline key examples of how such structures have been designed from scratch, namely, starting from the application-oriented selection and synthesis of the amphiphilic block copolymer. We then present the state-of-the-art techniques for assembling the supramolecular structure while permitting the encapsulation of active compounds and the incorporation of peptides/membrane proteins, essential to support in situ reactions, e.g., to replicate intracellular signaling cascades. Finally, we briefly discuss important features that these compartments offer and how they could be applied to engineer the next generation of microreactors, therapeutic solutions, and cell models.
Collapse
|
18
|
Waghwani HK, Uchida M, Fu CY, LaFrance B, Sharma J, McCoy K, Douglas T. Virus-Like Particles (VLPs) as a Platform for Hierarchical Compartmentalization. Biomacromolecules 2020; 21:2060-2072. [PMID: 32319761 DOI: 10.1021/acs.biomac.0c00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hierarchically self-assembled structures are common in biology, but it is often challenging to design and fabricate synthetic analogs. The archetypal cell is defined by hierarchically organized multicompartmentalized structures with boundaries that delineate the interior from exterior environments and is an inspiration for complex functional materials. Here, we have demonstrated an approach to the design and construction of a nested protein cage system that can additionally incorporate the packing of other functional macromolecules and exhibit some of the features of a minimal synthetic cell-like material. We have demonstrated a strategy for controlled co-packaging of subcompartments, ferritin (Fn) cages, together with active cellobiose-hydrolyzing β-glycosidase enzyme macromolecules, CelB, inside the sequestered volume of the bacteriophage P22 capsid. Using controlled in vitro assembly, we were able to modulate the stoichiometry of Fn cages and CelB encapsulated inside the P22 to control the degree of compartmentalization. The co-encapsulated enzyme CelB showed catalytic activity even when packaged at high total macromolecular concentrations comparable to an intracellular environment. This approach could be used as a model to create synthetic protein-based protocells that can confine smaller functionalized proto-organelles and additional macromolecules to support a range of biochemical reactions.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Chemistry, California State University Fresno, Fresno, California 93740, United States
| | - Chi-Yu Fu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Benjamin LaFrance
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Song Y, Jiang R, Wang Z, Yin Y, Li B, Shi AC. Formation and Regulation of Multicompartment Vesicles from Cyclic Diblock Copolymer Solutions: A Simulation Study. ACS OMEGA 2020; 5:9366-9376. [PMID: 32363288 PMCID: PMC7191859 DOI: 10.1021/acsomega.0c00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The self-assembly of a cyclic AB copolymer system with relatively long A blocks and short B blocks in B-selective solvents is investigated using a simulated annealing method. By investigating the effect of the lengths and solubilities of A and B blocks (N A and N B, εAS and εBS), the incompatibility between A and B blocks (εAB), as well as the polymer concentration (C p) and the conditions for the formation of multicompartment vesicles in cyclic diblock copolymer solutions, is predicted. The phase diagrams in terms of N B, εAS, and C p are constructed. The mechanism of the morphological transition is elucidated. It is shown that for cyclic copolymers the change in the above factors relating to the polymer and solvent properties all can lead to the transition from simple vesicles to multicompartment vesicles, but two different transition mechanisms are revealed. In addition, our simulations demonstrate that the self-assembly of cyclic copolymers could provide a powerful strategy for regulating the compartment number and the wall thickness of the multicompartment vesicles by adjusting the block solubilities and block lengths, respectively. These findings will facilitate the application of multicompartment architectures in cell mimicry, drug delivery, and nanoreactors.
Collapse
Affiliation(s)
- Yongbing Song
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Run Jiang
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Zheng Wang
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Yuhua Yin
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Baohui Li
- School
of Physics, Nankai University, Tianjin 300071, China
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
20
|
Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020; 21:1327-1350. [DOI: 10.1021/acs.biomac.9b01754] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoaib Iqbal
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Angela Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
21
|
Meyer CE, Abram SL, Craciun I, Palivan CG. Biomolecule–polymer hybrid compartments: combining the best of both worlds. Phys Chem Chem Phys 2020; 22:11197-11218. [DOI: 10.1039/d0cp00693a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in bio/polymer hybrid compartments in the quest to obtain artificial cells, biosensors and catalytic compartments.
Collapse
Affiliation(s)
| | | | - Ioana Craciun
- Department of Chemistry
- University of Basel
- Basel
- Switzerland
| | | |
Collapse
|
22
|
Wang T, Xu J, Fan X, Yan X, Yao D, Li R, Liu S, Li X, Liu J. Giant "Breathing" Proteinosomes with Jellyfish-like Property. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47619-47624. [PMID: 31747244 DOI: 10.1021/acsami.9b18160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design and construction of "breathing" self-assemblies has been a rather popular topic due to their potential in materials science and nanotechnology. Inspired by the "breathing" behavior of natural jellyfish, herein, we presented the construction of a giant "breathing" proteinosome through an interfacial self-assembly of proteins and surfactants at the oil/water interface of emulsions: The proteinosome displays "breathing" behavior and can swell and shrink for multiple cycles by protein folding and unfolding through the alternate addition and removal of denaturant; more importantly, when green fluorescent proteins were selected as alternative protein building blocks, the fluorescence of proteinosome can be reversibly switched on/off just like the behavior of jellyfish. Moreover, accompanied by reversible swelling and shrinking and on/off fluorescence, the expanded and shrunk membrane pore can be tuned for distinguishing quantum dots of different sizes. The folding-responsive breathing behavior of intelligent proteinosomes provides a platform for functional biomaterials.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xu Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Ruyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| |
Collapse
|
23
|
Nishimura T, Akiyoshi K. Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800801. [PMID: 30479925 PMCID: PMC6247036 DOI: 10.1002/advs.201800801] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/31/2018] [Indexed: 05/17/2023]
Abstract
Drug-delivery systems (DDSs), in which drug encapsulation in nanoparticles enables targeted delivery of therapeutic agents and their release at specific disease sites, are important because they improve drug efficacy and help to decrease side effects. Although significant progress has been made in the development of DDSs for the treatment of a wide range of diseases, new approaches that increase the scope and effectiveness of such systems are still needed. Concepts such as nanoreactors and nanofactories are therefore attracting much attention. Nanoreactors, which basically consist of vesicle-encapsulated enzymes, provide prodrug conversion to therapeutic agents rather than simple drug delivery. Nanofactories are an extension of this concept and combine the features of nanoreactors and delivery carriers. Here, the required features of nanofactories are discussed and an overview of current strategies for the design and fabrication of different types of nanoreactors, i.e., systems based on lipid or polymer vesicles, capsules, mesoporous silica, viral capsids, and hydrogels, and their respective advantages and shortcomings, is provided. In vivo applications of biocatalytic reactors in the treatment of cancer, glaucoma, neuropathic pain, and alcohol intoxication are also discussed. Finally, the prospects for further progress in this important and promising field are outlined.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer ChemistryGraduate School of EngineeringKyoto UniversityKatsuraNishikyo‐kuKyoto615‐8510Japan
- ERATO Bio‐Nanotransporter ProjectJapan Science and Technology Agency (JST)Kyoto UniversityKatsuraNishikyo‐kuKyoto615‐8530Japan
| | - Kazunari Akiyoshi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto UniversityKatsuraNishikyo‐kuKyoto615‐8510Japan
- ERATO Bio‐Nanotransporter ProjectJapan Science and Technology Agency (JST)Kyoto UniversityKatsuraNishikyo‐kuKyoto615‐8530Japan
| |
Collapse
|
24
|
Abstract
An ideal gene carrier requires an excellent gating system to efficiently load, protect, deliver, and release environmentally sensitive nucleic acids on demand. Presented in this communication is a polymersome with a "boarding gate" and a "debarkation gate" in the membrane to complete the above important missions. This dually gated polymersome is self-assembled from a block copolymer, poly(ethylene oxide)- block-poly[ N-isopropylacrylamide- stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin- stat-2-(diethylamino)ethyl methacrylate] [PEO- b-P(NIPAM- stat-CMA- stat-DEA)]. The hydrophilic PEO chains form the coronas of the polymersome, whereas the temperature and pH-sensitive P(NIPAM- stat-CMA- stat-DEA) block forms the dually gated heterogeneous membrane. The temperature-controlled "boarding gate" can be opened at room temperature for facile encapsulation of siRNA and plasmid DNA into polymersomes directly in aqueous solution. The "debarkation gate" can be triggered by proton sponge effect for intracellular release. Biological studies confirmed the successful encapsulation of siRNA and plasmid DNA, efficient in vitro and in vivo gene transfection, and the expression of green fluorescent protein (GFP) from GFP-encoding plasmid, suggesting that this kind of polymersome with a dual gating system can serve as an excellent biomacromolecular shuttle for gene delivery and other biological applications.
Collapse
Affiliation(s)
- Fangyingkai Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jiangang Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| |
Collapse
|
25
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Sun Z, Liu G, Hu J, Liu S. Photo- and Reduction-Responsive Polymersomes for Programmed Release of Small and Macromolecular Payloads. Biomacromolecules 2018; 19:2071-2081. [DOI: 10.1021/acs.biomac.8b00253] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ziqiang Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Peyret A, Zhao H, Lecommandoux S. Preparation and Properties of Asymmetric Synthetic Membranes Based on Lipid and Polymer Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3376-3385. [PMID: 29486556 DOI: 10.1021/acs.langmuir.7b04233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell membrane asymmetry is a common structural feature of all biological cells. Researchers have tried for decades to better study its formation and its function in membrane-regulated phenomena. In particular, there has been increasing interest in developing synthetic asymmetric membrane models in the laboratory, with the aim of studying basic physical chemistry properties that may be correlated to a relevant biological function. The present article aims to summarize the main presented approaches to prepare asymmetric membranes, which are most often made from lipids, polymers, or a combination of both.
Collapse
Affiliation(s)
- Ariane Peyret
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629 , 16 Avenue Pey Berland F-33600 Pessac , France
| | - Hang Zhao
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629 , 16 Avenue Pey Berland F-33600 Pessac , France
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629 , 16 Avenue Pey Berland F-33600 Pessac , France
| |
Collapse
|
28
|
Zhang X, Zong W, Cheng W, Han X. Codelivery of doxorubicin and sodium tanshinone IIA sulfonate using multicompartmentalized vesosomes to enhance synergism and prevent doxorubicin-induced cardiomyocyte apoptosis. J Mater Chem B 2018; 6:5243-5247. [DOI: 10.1039/c8tb01136b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doxorubicin, one of the most effective antitumor drugs, causes serious adverse cardiac effects.
Collapse
Affiliation(s)
- Xunan Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| | - Wei Zong
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| | - Wenlong Cheng
- Department of Chemical Engineering
- Monash University
- Australia
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| |
Collapse
|
29
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
30
|
Zhang Y, Schattling PS, Itel F, Städler B. Planar and Cell Aggregate-Like Assemblies Consisting of Microreactors and HepG2 Cells. ACS OMEGA 2017; 2:7085-7095. [PMID: 30023539 PMCID: PMC6045345 DOI: 10.1021/acsomega.7b01234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 05/04/2023]
Abstract
The assembly of microreactors has made considerable progress toward the fabrication of artificial cells. However, their characterization remains largely limited to buffer solution-based assays in the absence of their natural role model-the biological cells. Herein, the combination of microreactors with HepG2 cells either in planar cell cultures or in the form of cell aggregates is reported. Alginate (Alg)-based microreactors loaded with catalase are assembled by droplet microfluidics, and their activity is confirmed. The acceptance of polymer-coated ∼40 μm Alg particles by proliferating HepG2 cells is depending on the terminating polymer layer. When these functional microreactors are cocultured with HepG2 cells, they can be employed for detoxification, that is, hydrogen peroxide removal, and by doing so, they assist the cells to survive. This report is among the first successful combination of microreactors with biological cells, that is, HepG2 cells, contributing to the fundamental understanding of integrating synthetic and biological partners toward the maturation of this semisynthetic concept for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S. Schattling
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Fabian Itel
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| |
Collapse
|
31
|
Lu AX, Oh H, Terrell JL, Bentley WE, Raghavan SR. A new design for an artificial cell: polymer microcapsules with addressable inner compartments that can harbor biomolecules, colloids or microbial species. Chem Sci 2017; 8:6893-6903. [PMID: 30155196 PMCID: PMC6103254 DOI: 10.1039/c7sc01335c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells have an architecture consisting of multiple inner compartments (organelles) such as the nucleus, mitochondria, and lysosomes. Each organelle is surrounded by a distinct membrane and has unique internal contents; consequently, each organelle has a distinct function within the cell. In this study, we create biopolymer microcapsules having a compartmentalized architecture as in eukaryotic cells. To make these capsules, we present a biocompatible method that solely uses aqueous media (i.e., avoids the use of oil phases), requires no sacrificial templates, and employs a minimal number of steps. Our approach exploits the electrostatic complexation of oppositely charged polymers dissolved in aqueous media. Specifically, droplets of an anionic biopolymer are generated using a simple microcapillary device, with the droplets being sheared off the capillary tip by pulses of gas (air or nitrogen). The liquid droplets are then introduced into a reservoir whereupon they encounter multivalent cations as well as a cationic biopolymer; thereby, a solid shell is formed around each droplet by electrostatic interactions between the polymers while the core is ionically cross-linked into a gel. In the next step, a discrete number of these capsules are encapsulated within a larger outer capsule by repeating the same process with a wider capillary. Our approach allows us to control the overall diameter of these multicompartment capsules (MCCs) (∼300-500 μm), the diameters of the inner compartments (∼100-300 μm), and the number of inner compartments in an MCC (1 to >5). More importantly, we can encapsulate different payloads in each of the inner compartments, including colloidal particles, enzymes, and microbial cells, in all cases preserving their native functions. A hallmark of biological cells is the existence of cascade processes, where products created in one organelle are transported and used in another. As an initial demonstration of the capabilities afforded by our MCCs, we study a simple cascade process involving two strains of bacteria (E. coli), which communicate through small molecules known as autoinducers. In one compartment of the MCC, we cultivate E. coli that produces autoinducer 2 (AI-2) in the presence of growth media. The AI-2 then diffuses into an adjacent compartment within the MCC wherein a reporter strain of E. coli is cultivated. The reporter E. coli imbibes the AI-2 and in turn, produces a fluorescence response. Thus, the action (AI-2 production) and response (fluorescence signal) are localized within different compartments in the same MCC. We believe this study is an important advance in the path towards an artificial cell.
Collapse
Affiliation(s)
- Annie Xi Lu
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , MD 20742 , USA .
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , MD 20742 , USA .
| | - Jessica L Terrell
- Fischell Department of Bioengineering , University of Maryland , College Park , MD 20742 , USA
| | - William E Bentley
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , MD 20742 , USA .
- Fischell Department of Bioengineering , University of Maryland , College Park , MD 20742 , USA
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , MD 20742 , USA .
- Fischell Department of Bioengineering , University of Maryland , College Park , MD 20742 , USA
| |
Collapse
|
32
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
33
|
Zhao Y, Li X, Zhao X, Yang Y, Li H, Zhou X, Yuan W. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications. Front Pharmacol 2017; 8:374. [PMID: 28676761 PMCID: PMC5476746 DOI: 10.3389/fphar.2017.00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 11/28/2022] Open
Abstract
Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.
Collapse
Affiliation(s)
- Yi Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaoming Li
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Hui Li
- School of Medicine, University of California, San FranciscoSan Francisco, CA, United States
| | - Xinbo Zhou
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and ToxicologyBeijing, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
34
|
Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles. Colloids Surf B Biointerfaces 2017; 152:199-213. [DOI: 10.1016/j.colsurfb.2017.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/19/2023]
|
35
|
Wang L, Wen P, Liu X, Zhou Y, Li M, Huang Y, Geng L, Mann S, Huang X. Single-step fabrication of multi-compartmentalized biphasic proteinosomes. Chem Commun (Camb) 2017; 53:8537-8540. [DOI: 10.1039/c7cc04180b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multi-compartmentalized biphasic proteinosomes were self-assembled using a single-step double Pickering emulsion procedure, and exploited for enzyme-mediated interfacial catalysis, polysaccharide shell templating, and hydrogel functionalization.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| | - Ping Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| | - Yuting Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry
- School of Chemistry
- University of Bristol
- Bristol
- UK
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| | - Lin Geng
- School of Material Science and Engineering
- HIT
- Harbin 150001
- China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry
- School of Chemistry
- University of Bristol
- Bristol
- UK
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology (HIT)
- Harbin 150001
| |
Collapse
|
36
|
Liu X, Zhou P, Huang Y, Li M, Huang X, Mann S. Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angew Chem Int Ed Engl 2016; 55:7095-100. [PMID: 27144816 DOI: 10.1002/anie.201601427] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022]
Abstract
A facile route to hierarchically organized multicompartmentalized proteinosomes based on a recursive Pickering emulsion procedure using amphiphilic protein-polymer nanoconjugate building blocks is described. The number of incarcerated guest proteinosomes within a single host proteinosome is controlled, and enzymes and genetic polymers encapsulated within targeted subcompartments to produce chemically organized multi-tiered structures. Three types of spatiotemporal response-retarded concomitant release, synchronous release or hierarchical release of dextran and DNA-are demonstrated based on the sequential response of the host and guest membranes to attack by protease, or through variations in the positioning of disulfide-containing cross-links in either the host or guest proteinosomes integrated into the nested architectures. Overall, our studies provide a step towards the construction of hierarchically structured synthetic protocells with chemically and spatially integrated proto-organelles.
Collapse
Affiliation(s)
- Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Pei Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
37
|
Liu X, Zhou P, Huang Y, Li M, Huang X, Mann S. Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Pei Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry; School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry; School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| |
Collapse
|
38
|
Habel J, Ogbonna A, Larsen N, Krabbe S, Almdal K, Hélix-Nielsen C. How preparation and modification parameters affect PB-PEO polymersome properties in aqueous solution. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Habel
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 115, 2800 Kgs Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
| | - Anayo Ogbonna
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
| | - Nanna Larsen
- Copenhagen Biocenter, University of Copenhagen; Ole Maaløes Vej 5 Copenhagen 2200 Denmark
| | - Simon Krabbe
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen 2100 Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology; Technical University of Denmark; Produktionstorvet, Building 423, 2800 Kgs Lyngby Denmark
| | - Claus Hélix-Nielsen
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 115, 2800 Kgs Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
- Laboratory for Water Biophysics and Membrane Processes; Faculty of Chemistry and Chemical Engineering, University of Maribor; Smetanova Ulica 17 Maribor 2000 Slovenia
| |
Collapse
|
39
|
Hadorn M, Boenzli E, Hanczyc MM. Specific and Reversible DNA-Directed Self-Assembly of Modular Vesicle-Droplet Hybrid Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3561-3566. [PMID: 27010467 DOI: 10.1021/acs.langmuir.5b04003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modular hybrid structures functionalized to assemble in a controlled manner possess diverse properties necessary for a new generation of complex materials and applications. Here, we functionalized giant unilamellar vesicles and emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker to demonstrate specific and reversible DNA-directed self-assembly into vesicle-droplet hybrid structures. A low molar percentage of PEGylated phospholipids independent of the DNA-based recognition machinery at the supramolecular surface modulated the stability of the system. The reversibility of the aggregation was demonstrated by heating the hybrid structures above the melting temperature of the conjoining double-stranded DNA in the presence of excess biotin. The application of this general assembly control system to diverse multiphase soft materials provides the mechanism to assemble complex modular hybrid systems in a controllable and reversible way, which may provide an advantage where multifunctionality is a target property.
Collapse
Affiliation(s)
- Maik Hadorn
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| | - Eva Boenzli
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| |
Collapse
|
40
|
Schoonen L, van Hest JCM. Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1109-28. [PMID: 26509964 DOI: 10.1002/adma.201502389] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Rui L, Liu L, Wang Y, Gao Y, Zhang W. Orthogonal Approach to Construct Cell-Like Vesicles via Pillar[5]arene-Based Amphiphilic Supramolecular Polymers. ACS Macro Lett 2015. [DOI: 10.1021/acsmacrolett.5b00900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leilei Rui
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lichao Liu
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yun Gao
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
42
|
Affiliation(s)
- Regina Bleul
- Department
Nanoparticle Technologies, Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | - Raphael Thiermann
- Department
Nanoparticle Technologies, Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | - Michael Maskos
- Department
Nanoparticle Technologies, Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
- Institut
für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| |
Collapse
|
43
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
44
|
Lomora M, Itel F, Dinu IA, Palivan CG. Selective ion-permeable membranes by insertion of biopores into polymersomes. Phys Chem Chem Phys 2015; 17:15538-46. [DOI: 10.1039/c4cp05879h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomimetic polymersomes with an ion-selective membrane were successfully engineered by insertion of ionomycin, without affecting their final architecture.
Collapse
Affiliation(s)
- Mihai Lomora
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Fabian Itel
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | | | |
Collapse
|
45
|
Hosta-Rigau L, York-Duran MJ, Zhang Y, Goldie KN, Städler B. Confined multiple enzymatic (cascade) reactions within poly(dopamine)-based capsosomes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12771-9. [PMID: 24968314 DOI: 10.1021/am502743z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The design of compartmentalized carriers as artificial cells is envisioned to be an efficient tool with potential applications in the biomedical field. The advent of this area has witnessed the assembly of functional, bioinspired systems attempting to tackle challenges in cell mimicry by encapsulating multiple compartments and performing controlled encapsulated enzymatic catalysis. Although capsosomes, which consist of liposomes embedded within a polymeric carrier capsule, are among the most advanced systems, they are still amazingly simple in their functionality and cumbersome in their assembly. We report on capsosomes by embedding liposomes within a poly(dopamine) (PDA) carrier shell created in a solution-based single-step procedure. We demonstrate for the first time the potential of PDA-based capsosomes to act as artificial cell mimics by performing a two-enzyme coupled reaction in parallel with a single-enzyme conversion by encapsulating three different enzymes into separated liposomal compartments. In the former case, the enzyme uricase converts uric acid into hydrogen peroxide, CO2 and allantoin, followed by the reaction of hydrogen peroxide with the reagent Amplex Ultra Red in the presence of the enzyme horseradish peroxidase to generate the fluorescent product resorufin. The parallel enzymatic catalysis employs the enzyme ascorbate oxidase to convert ascorbic acid into 2-L-dehydroascorbic acid.
Collapse
Affiliation(s)
- Leticia Hosta-Rigau
- Interdisciplinay nanoscience center (iNANO), Aarhus University , 8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
46
|
Teo BM, Hosta-Rigau L, Lynge ME, Städler B. Liposome-containing polymer films and colloidal assemblies towards biomedical applications. NANOSCALE 2014; 6:6426-33. [PMID: 24817527 DOI: 10.1039/c4nr00459k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liposomes are important components for biomedical applications. Their unique architecture and versatile nature have made them useful carriers for the delivery of therapeutic cargo. The scope of this minireview is to highlight recent developments of biomimetic liposome-based multicompartmentalized assemblies of polymer thin films and colloidal carriers, and to outline a selection of recent applications of these materials in bionanotechnology.
Collapse
Affiliation(s)
- Boon M Teo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
47
|
Williams DS, Patil AJ, Mann S. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1830-40. [PMID: 24515342 DOI: 10.1002/smll.201303654] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/18/2013] [Indexed: 05/19/2023]
Abstract
Molecularly crowded, polyelectrolyte/ribonucleotide-enriched membrane-free coacervate droplets are transformed into membrane-bounded sub-divided vesicles by using a polyoxometalate-mediated surface-templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro-droplets into novel three-tiered micro-compartments comprising a semi-permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub-membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro-compartments by sequestration into the coacervate micro-droplets prior to vesicle formation. The vesicle-encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two-enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media.
Collapse
Affiliation(s)
- David S Williams
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | | |
Collapse
|
48
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomater 2014; 10:2159-68. [PMID: 24440420 DOI: 10.1016/j.actbio.2014.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
The clinical applications of protein drugs are restricted because of the absence of viable protein delivery vehicles. Here, we report on reduction- and pH--sensitive crosslinked polymersomes based on the poly(ethylene glycol)-poly(acrylic acid)-poly(2-(diethyl amino)ethyl methacrylate) (PEG-PAA-PDEA) triblock copolymer for efficient intracellular delivery of proteins and the potent induction of cancer cell apoptosis. PEG-PAA-PDEA (1.9-0.8-8.2kgmol(-1)) was synthesized by controlled reversible addition-fragmentation chain transfer polymerization and further modified with cysteamine to yield the thiol-containing PEG-PAA(SH)-PDEA copolymer. PEG-PAA(SH)-PDEA was water-soluble at acidic and physiological pH but formed robust and monodisperse polymersomes with an average size of ∼35nm upon increasing the pH to 7.8 or above followed by oxidative crosslinking. These disulfide-crosslinked polymersomes, while exhibiting excellent colloidal stability, were rapidly dissociated in response to 10mM glutathione at neutral or mildly acidic conditions. Notably, these polymersomes could efficiently load proteins like bovine serum albumin and cytochrome C (CC). The in vitro release studies revealed that protein release was fast and nearly quantitative under the intracellular-mimicking reducing environment. Confocal microscopy observations showed that these dual-sensitive polymersomes efficiently released fluorescein isothiocyanate-CC into MCF-7 cells in 6h. Most remarkably, MTT assays showed that CC-loaded dual-sensitive polymersomes induced potent cancer cell apoptosis, in which markedly decreased cell viabilities of 11.3%, 8.1% and 52.7% were observed for MCF-7, HeLa and 293T cells, respectively, at a CC dosage of 160μgml(-1). In contrast, free CC caused no cell death under otherwise the same conditions. These dual-bioresponsive polymersomes have appeared as a multifunctional platform for active intracellular protein release.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
49
|
Siti W, de Hoog HPM, Fischer O, Shan WY, Tomczak N, Nallani M, Liedberg B. An intercompartmental enzymatic cascade reaction in channel-equipped polymersome-in-polymersome architectures. J Mater Chem B 2014; 2:2733-2737. [PMID: 32261439 DOI: 10.1039/c3tb21849j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Compartmentalization, as a design principle, is a prerequisite for the functioning of eukaryotic cells. Although cell mimics in the form of single vesicular compartments such as liposomes or polymersomes have been tremendously successful, investigations of the corresponding higher-order architectures, in particular bilayer-based multicompartment vesicles, have only recently gained attention. We hereby demonstrate a multicompartment cell-mimetic nanocontainer, built-up from fully synthetic membranes, which features an inner compartment equipped with a channel protein and a semi-permeable outer compartment that allows passive diffusion of small molecules. The functionality of this multicompartment architecture is demonstrated by a cascade reaction between enzymes that are segregated in separate compartments. The unique architecture of polymersomes, which combines stability with a cell-membrane-mimetic environment, and their assembly into higher-order architectures could serve as a design principle for new generation drug-delivery vehicles, biosensors, and protocell models.
Collapse
Affiliation(s)
- Winna Siti
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kowalczuk A, Trzcinska R, Trzebicka B, Müller AH, Dworak A, Tsvetanov CB. Loading of polymer nanocarriers: Factors, mechanisms and applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.10.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|