1
|
Hu H, Zhou Y, Xi B, Li Y. Polymer Mechanochemistry in Confined Spaces. Angew Chem Int Ed Engl 2024:e202417357. [PMID: 39365280 DOI: 10.1002/anie.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
With the development of mechanophores, polymer mechanochemistry has emerged as a powerful tool for creating force-responsive materials with a variety of desired functions, ranging from color change to molecular release. However, it remains challenging to improve the efficiency of mechanochemical activation, especially for mechanophores embedded within polymer networks, which has profound implications for translating mechanochemical responses into materials-centered applications. The physical and chemical conditions under spatial confinement differ significantly from those in the surrounding bulk environment, offering opportunities to facilitate mechanochemical activation. In this Minireview, we discuss and summarize recent progress in polymer mechanochemistry within confined spaces including surfaces/interfaces, polymer assemblies, and other nanostructures, specifically focusing on the effects of spatial confinement on the enhancement of mechanophore activation. We envision that combining confinement effects with advances in molecular and materials engineering will further improve the activation efficiency, capitalizing more fully on the potential of mechanophores toward practical applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yang Zhou
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China
| | - Bin Xi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wang F, Liu W, Lu R, Huang JH, Zuo B, Wang X. Entropy-Enhanced Mechanochemical Activation for Thermal Degrafting of Surface-Tethered Dry Polystyrene Brushes. ACS Macro Lett 2022; 11:1041-1048. [PMID: 35920565 DOI: 10.1021/acsmacrolett.2c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dry polymer brushes have attracted great attention because of their potential utility in regulating interface properties. However, it is still unknown whether dry polymer brushes will exhibit degrafting behavior as a result of thermal annealing. Herein, a study of the conformational entropy effect on thermal degrafting of dry polystyrene (PS) brushes is presented. For PS brushes with an initial grafting density (σpini) of 0.61 nm-2, degrafting behavior was observed at 393 K, and the equilibrium σp was approximately 0.14 nm-2 at 413 K. However, for brushes with σpini ≤ 0.14 nm-2, thermal degrafting was not observed even if the temperature was increased to 453 K. Furthermore, we found that the degrafting rate was faster for PS brushes with higher σpini and higher molecular weights when σpini > 0.14 nm-2. Our findings confirmed that degrafting is a mechanochemical activation process driven by tension imposed on bonds that anchor the chains to the surface, and the process is amplified by conformational entropy.
Collapse
Affiliation(s)
- Fengliang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenqing Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rongxing Lu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Hua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
4
|
Li Y, Lin Y, Dai Y, Ko Y, Genzer J. Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13693-13699. [PMID: 31565947 DOI: 10.1021/acs.langmuir.9b02610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The stability of surface-tethered polyelectrolyte brushes has been investigated during the past few years. We have previously reported on the degrafting of poly(acrylic acid) (PAA) polymer brushes from flat silicon substrates. Here, we present a detailed study on the effects of NaCl concentration and the grafting density and molecular weight on the stability of PAA brushes during incubation in 0.1 M ethanolamine buffer (pH 9.0) solutions. Without NaCl in the buffer solution, the PAA brushes remain intact. Adding NaCl facilitates etching of the substrate due to accelerating dissolution of the top silica layer and promoting degrafting of the PAA chains. The PAA grafting density and molecular weight play an important role in the substrate etching by affecting the penetration barrier and local concentration of the etchants. We also tested the stability of self-assembled monolayers (SAMs) made of hydrophobic alkyltrichlorosilanes anchored on silicon substrates. The results demonstrated that the SAMs were too thin to protect the substrates from etching, in contrast to thick poly(methyl methacrylate) brushes. Our findings suggest that both polymer brushes (especially polyelectrolyte brushes) and SAMs anchored to silicon substrates may undergo erosion/etching on the substrates in basic environments, which compromises their stability and therefore jeopardizes their applications in coating, biosensing, and so forth.
Collapse
Affiliation(s)
- Yuanchao Li
- Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering , Sun Yat-Sen University , No. 135 Xingang Xi Road , Guangzhou 510275 , China
| | - Yiliang Lin
- Department of Chemical & Biomolecular Engineering , North Carolina State University , 911 Partners Way , Raleigh , North Carolina 27695-7905 , United States
| | - Yunkai Dai
- Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering , Sun Yat-Sen University , No. 135 Xingang Xi Road , Guangzhou 510275 , China
| | - Yeongun Ko
- Department of Chemical & Biomolecular Engineering , North Carolina State University , 911 Partners Way , Raleigh , North Carolina 27695-7905 , United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering , North Carolina State University , 911 Partners Way , Raleigh , North Carolina 27695-7905 , United States
| |
Collapse
|
5
|
Ko Y, Genzer J. Spontaneous Degrafting of Weak and Strong Polycationic Brushes in Aqueous Buffer Solutions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
6
|
Patil R, Miles J, Ko Y, Datta P, Rao BM, Kiserow D, Genzer J. Kinetic Study of Degrafting Poly(methyl methacrylate) Brushes from Flat Substrates by Tetrabutylammonium Fluoride. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rohan Patil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jason Miles
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Preeta Datta
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Douglas Kiserow
- US Army Research
Office, Research Triangle Park, North Carolina 27709-2211, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
7
|
Li Y, Lin Y, Ko Y, Kiserow D, Genzer J. Visualization of Mechanochemically-Assisted Degrafting of Surface-Tethered Poly(Acrylic Acid) Brushes. ACS Macro Lett 2018; 7:609-613. [PMID: 35632964 DOI: 10.1021/acsmacrolett.8b00241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report visualization of mechanochemically assisted degrafting of surface-tethered poly(acrylic acid) (PAA) brushes in a basic aqueous buffer at nanometer to micrometer length scale by monitoring changes in local etching of silicon substrates. PAA brushes were prepared by surface-initiated atom transfer radical polymerization and incubated in 0.1 M ethanolamine buffer (pH 9.0) with 0.5 M NaCl. Morphological changes of the underlying substrates were monitored by scanning electron microscopy and atomic force microscopy. The appearance of regular-shaped pits indicated etching of the substrate, and both their number and size grew with increasing incubation time. We compared the etching behaviors for PAA, poly(methyl methacrylate) (PMMA), and poly(poly(ethylene glycol) methacrylate) (PPEGMA) brushes grafted on silicon substrates. After incubation for 7 days, the substrate of PMMA brush remained intact. In PAA brush systems, we detected the formation of a few large pits whose size grew in time. Many pits showed up on the substrate of PPEGMA brush but with substantially smaller size compared to PAA. Our findings suggest that hydrophobicity and stability of the grafted polymers play an important role in the morphological changes of the underlying silicon substrates under given incubation conditions.
Collapse
Affiliation(s)
- Yuanchao Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Douglas Kiserow
- U.S. Army Research Office Research Triangle Park, North Carolina 27709, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
8
|
Li Y, Ko Y, Lin Y, Kiserow D, Genzer J. Enhanced Stability of Surface-Tethered Diblock Copolymer Brushes with a Neutral Polymer Block and a Weak Polyelectrolyte Block: Effects of Molecular Weight and Hydrophobicity of the Neutral Block. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuanchao Li
- Department of Chemical &Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- US Army Research
Office, Research Triangle Park, North Carolina 27709, United States
| | - Yeongun Ko
- Department of Chemical &Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yiliang Lin
- Department of Chemical &Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Douglas Kiserow
- Department of Chemical &Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- US Army Research
Office, Research Triangle Park, North Carolina 27709, United States
| | - Jan Genzer
- Department of Chemical &Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Kang X, Cai W, Zhang S, Cui S. Revealing the formation mechanism of insoluble polydopamine by using a simplified model system. Polym Chem 2017. [DOI: 10.1039/c6py02005d] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
On the basis of a study of a simplified model system and Set Theory, a novel pathway on the formation of polydopamine is proposed.
Collapse
Affiliation(s)
- Xiaomin Kang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Wanhao Cai
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Song Zhang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
11
|
Understanding the effect of hydrophobic protecting blocks on the stability and biopassivity of polymer brushes in aqueous environments: A Tiramisù for cell-culture applications. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Galvin CJ, Bain ED, Henke A, Genzer J. Instability of Surface-Grafted Weak Polyacid Brushes on Flat Substrates. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Casey J. Galvin
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Okinawa
Institute of Science Technology Graduate University, Onna-son, Okinawa 904-0497 Japan
| | - Erich D. Bain
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- U.S. Army Research Laboratory, Aberdeen
Proving Ground, Maryland 21005, United States
| | - Adam Henke
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
Klok HA, Genzer J. Expanding the Polymer Mechanochemistry Toolbox through Surface-Initiated Polymerization. ACS Macro Lett 2015; 4:636-639. [PMID: 35596399 DOI: 10.1021/acsmacrolett.5b00295] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-initiated polymerizations represent a versatile toolbox to generate densely grafted assemblies of chain end-tethered polymers. At sufficiently short interchain distances, surface-grafted polymers are forced into an extended chain conformation, which forms the basis of several unique properties, including their ability to withstand efficiently biofouling or to act as low friction coatings. While the effect on materials properties is well-established, only relatively recently first reports have appeared describing that chain stretching in surface-grafted polymer films also impacts chemical stability/reactivity. This Viewpoint presents surface-initiated polymerization as an alternative polymer mechanochemical tool. The absence of an external force field to induce chain elongation and the possibility to modulate chain stretching by varying brush molecular weight and grafting density, in conjunction with electrostatic interactions and nanoinclusions that may be present inside the polymeric grafts, make surface-initiated polymerization an attractive tool to both study and understand the effects of polymer chain conformation on the stability/reactivity of surface-grafted polymers.
Collapse
Affiliation(s)
- Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Jan Genzer
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
14
|
Lyu B, Cha W, Mao T, Wu Y, Qian H, Zhou Y, Chen X, Zhang S, Liu L, Yang G, Lu Z, Zhu Q, Ma H. Surface confined retro Diels-Alder reaction driven by the swelling of weak polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6254-6259. [PMID: 25734373 DOI: 10.1021/acsami.5b00538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, the type of reactions driven by mechanical force has increased significantly; however, the number of methods for activating those mechanochemical reactions stays relatively limited. Furthermore, in situ characterization of a reaction is usually hampered by the inherent properties of conventional methods. In this study, we report a new platform that utilizes mechanical force generated by the swelling of surface tethered weak polyelectrolytes. An initiator with Diels-Alder (DA) adduct structure was applied to prepare the polyelectrolyte-carboxylated poly(OEGMA-r-HEMA), so that the force could trigger the retro DA reaction. The reaction was monitored in real time by quartz crystal microbalance and confirmed with atomic force microscopy and X-ray photoelectron spectroscopy. Compared with the conventional heating method, the swelling-induced retro DA reaction proceeded rapidly with high conversion ratio and selectivity. A 23.61 kcal/mol theoretical energy barrier supported the practicability of this retro DA reaction being triggered mechanically at ambient temperature. During swelling, the tensile force was controllable and persistent. This unique feature imparts this mechanochemical platform the potential to "freeze" an intermediate state of a reaction for in situ spectroscopic observations, such as surface-enhanced Raman spectroscopy and frequency generation spectroscopy.
Collapse
Affiliation(s)
- Beier Lyu
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
| | - Wenli Cha
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
- #Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Tingting Mao
- §State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Yuanzi Wu
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
| | - Hujun Qian
- ∥State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yitian Zhou
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
| | | | - Shen Zhang
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
| | - Lanying Liu
- §State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | | | - Zhongyuan Lu
- ∥State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Qiang Zhu
- §State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hongwei Ma
- †Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, People's Republic of China
- ‡Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
15
|
Li Y, Sheiko SS. Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures. Top Curr Chem (Cham) 2015; 369:1-36. [PMID: 25805145 DOI: 10.1007/128_2015_627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mechanical activation of chemical bonds is usually achieved by applying external forces. However, nearly all molecules exhibit inherent strain of their chemical bonds and angles as a result of constraints imposed by covalent bonding and interactions with the surrounding environment. Particularly strong deformation of bonds and angles is observed in hyperbranched macromolecules caused by steric repulsion of densely grafted polymer branches. In addition to the tension amplification, macromolecular architecture allows for accurate control of strain distribution, which enables focusing of the internal mechanical tension to specific chemical bonds and angles. As such, chemically identical bonds in self-strained macromolecules become physically distinct because the difference in bond tension leads to the corresponding difference in the electronic structure and chemical reactivity of individual bonds within the same macromolecule. In this review, we outline different approaches to the design of strained macromolecules along with physical principles of tension management, including generation, amplification, and focusing of mechanical tension at specific chemical bonds.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3290, USA.
| |
Collapse
|
16
|
Lv B, Zhou Y, Cha W, Wu Y, Hu J, Li L, Chi L, Ma H. Molecular composition, grafting density and film area affect the swelling-induced Au-S bond breakage. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8313-8319. [PMID: 24803135 DOI: 10.1021/am501150m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In previous studies, we reported the first observation of the Au-S bond breakage induced mechanically by the swelling of the surface-tethered weak polyelectrolyte brushes in phosphate buffered saline (PBS), a phenomenon with broad applications in the fields of biosensors and functional surfaces. In this study, three factors, namely the molecular composition, grafting density and film area of the weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random-2-hydroxyethyl methacrylate) (poly(OEGMA-r-HEMA)), were studied systematically on how they affected the swelling-induced Au-S bond breakage (ABB). The results showed that, first, the swelling-induced ABB is applicable to a range of molecular compositions and grafting densities; but the critical thickness (Tcritical,dry) varied with both of the two factors. An analysis on the swelling ratio further revealed that the difference in the Tcritical,dry arose from the difference in the swelling ability. A film needed to swell to ∼250 nm to induce ABB regardless of its composition or structure, thus a higher swelling ratio would lead to a lower Tcritical,dry value. Then, the impact of the film area was studied in micrometer- and sub-micrometer-scale brush patterns, which showed that only partial, rather than complete ABB was induced in these microscopic films, resulting in buckling instead of film detaching. These results demonstrated that the ABB is suitable to be used in the design of biosensors, stimulus-responsive materials and mechanochemical devices. Although the >160 μm(2) required area for uniform ABB hinders the application of ABB in nanolithography, the irreversible buckling provides a facile method of generating rough surfaces.
Collapse
Affiliation(s)
- Bei'er Lv
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li A, Ramakrishna SN, Schwarz T, Benetti EM, Spencer ND. Tuning surface mechanical properties by amplified polyelectrolyte self-assembly: where "grafting-from" meets "grafting-to". ACS APPLIED MATERIALS & INTERFACES 2013; 5:4913-4920. [PMID: 23656703 DOI: 10.1021/am4006379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the interaction of surface-tethered weak polyacid brushes, poly(methacrylic acid), with a weak polybase poly(L-lysine)-graft-poly(ethylene glycol), in solution. The grafted polyacid brushes, grown directly from the silicon substrate by UVLED surface-initiated polymerization, act as a nanotemplate for the solution-phase polybase, which penetrates into the brushes, forming a polyelectrolyte complex (PEC), whose mechanical and nanotribological properties are markedly influenced by the electrostatic assembly conditions. The mechanical effects are amplified due to the architecture of the specific polybase used, which contributes approximately 2k Da per unit charge to the overall system, resulting in an efficient filling of the polyacid brushes, which thus acts as a scaffold. The distribution of the adsorbed copolymers in the PEC films has been investigated by means of confocal microscopy. The unique structure of the PEC films provides a system whose mechanical and nanotribological properties can be tuned over a wide range.
Collapse
Affiliation(s)
- Ang Li
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Zheng Z, Zhao H, Fa W, He W, Wong KW, Kwok RWM, Lau WM. Construction of cross-linked polymer films covalently attached on silicon substrate via a self-assembled monolayer. RSC Adv 2013. [DOI: 10.1039/c3ra40949j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Liu X, Xu Y, Wu Z, Chen H. Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromol Biosci 2012; 13:147-54. [DOI: 10.1002/mabi.201200269] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/27/2012] [Indexed: 12/22/2022]
|
20
|
Abstract
The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.
Collapse
|
21
|
Fu L, Chen Y, Ma H. Solidified liquid layer model expands the application fields of quartz crystal microbalance. Macromol Rapid Commun 2012; 33:735-41. [PMID: 22492463 DOI: 10.1002/marc.201100878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/22/2012] [Indexed: 11/11/2022]
Abstract
The application of a quartz crystal microbalance (QCM) in liquid is hindered by the complexity of data analysis. Recently, a "solidified liquid layer" (SLL) model has been proposed to simplify the data analysis. Here, missing evidence to support the SLL model is provided: 1) the SLL model is responsive to the density change of the liquid environment, 2) thickness values from the SLL model (T(SLL) ) are in agreement with values measured by ellipsometry. The SLL model predicts that a 0.18 nm change of T(SLL) will lead to a 1 Hz signal, which is the resolution that most commercial QCMs could easily achieve. Using the SLL model, Au-S bond breakage has been successful. Biosensor applications are also being designed according to the SLL model. It is believed that with these results, the SLL model will bring QCM back to the radar screen of scientists.
Collapse
Affiliation(s)
- Long Fu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P R China
| | | | | |
Collapse
|
22
|
The change in thickness of the solidified liquid layer rather than the immobilized mass determines the frequency response of a quartz crystal microbalance. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Saha S, Bruening ML, Baker GL. Facile synthesis of thick films of poly(methyl methacrylate), poly(styrene), and poly(vinyl pyridine) from Au surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3042-8. [PMID: 21728374 PMCID: PMC3193157 DOI: 10.1021/am200560g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO(2) substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO(2) stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO(2) under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from noncross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ∼100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 h. At temperatures >100 °C, the polymer brush layers delaminate as large area films.
Collapse
|
24
|
Zhu Y, Lv B, Zhang P, Ma H. Swelling induced Au–S bond breakage is determined by the molecular composition of surface tethered copolymers—carboxylated poly(OEGMA-r-HEMA). Chem Commun (Camb) 2011; 47:9855-7. [DOI: 10.1039/c1cc13106k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Sui X, Di Luca A, Gunnewiek MK, Kooij ES, van Blitterswijk CA, Moroni L, Hempenius MA, Vancso GJ. Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities. Aust J Chem 2011. [DOI: 10.1071/ch11168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly(N-isopropylacrylamide) brushes with three different grafting densities were synthesized via surface-initiated atom-transfer radical polymerization on glass or on silicon substrates. The substrates were modified with monochlorosilane-based or trimethoxysilane-based atom-transfer radical polymerization initiators. Atomic force microscopy images showed detachment of brushes from the monochlorosilane-based system under cell culture conditions. In situ ellipsometry demonstrated the reversible swelling and collapse of the brushes as the temperature was varied across the lower critical solution temperature of poly(N-isopropylacrylamide) in pure water. The polymer brushes were evaluated as supporting substrates for MC-3T3 cell cultures. At 37°C (T>lower critical solution temperature), the seeded cells adhered, spread, and proliferated, whereas at 25°C (T<lower critical solution temperature), the cells detached from the surface. The low-density polymer brush showed the highest cell adhesion, featuring adhering cells with an elongated morphology.
Collapse
|