1
|
Feng Y, Xu S, Zheng J, Huang L, Ye T, Wang G, Jiang Y, Liu N. Crown-Ether Crystal Channel Membranes with Subnanometer Pores for Selective Na + Transport. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26817-26823. [PMID: 38727564 DOI: 10.1021/acsami.4c05613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Emulating biological sodium ion channels to achieve high selectivity and rapid Na+ transport is important for water desalination, energy conversion, and separation processes. However, the development of artificial ion channels, especially multichannels, to achieve high ion selectivity, remains a challenge. In this work, we demonstrate the fabrication of ion channel membranes utilizing crown-ether crystals (DA18C6-nitrate crystals), which feature extremely consistent subnanometer pores. The polyethylene terephthalate (PET) membranes were initially subjected to amination, followed by the in situ growth of DA18C6-nitrate crystals to establish ordered multichannels aimed at facilitating selective Na+ conductance. These channels allow rapid Na+ transport while inhibiting the migration of other ions (K+ and Ca2+). The Na+ transport rate was 2.15 mol m-2 h-1, resulting in the Na+/K+ and Na+/Ca2+ selectivity ratios of 6.53 and 12.56, respectively. Due to the immobilization of the crown-ether ring, when the size of the transmembrane ion exceeded that of the crown-ether ring's cavity, the ions had to undergo a dehydration process to pass through the channel. This resulted in the ions encountering a higher energy barrier upon entering the channel, making it more difficult for them to permeate. However, the size of Na+ was compatible with the cavity of the crown-ether ring and was able to displace the hydrated layer effectively, facilitating selective Na+ translocation. In summary, this research offers a promising approach for the future development of functionalized ion channels and efficient membrane materials tailored for high-performance Na+ separation.
Collapse
Affiliation(s)
- Yueyue Feng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Shiwei Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Liying Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Guofeng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
- Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, P.R China
| |
Collapse
|
2
|
Xin W, Ling H, Cui Y, Qian Y, Kong XY, Jiang L, Wen L. Tunable Ion Transport in Two-Dimensional Nanofluidic Channels. J Phys Chem Lett 2023; 14:627-636. [PMID: 36634054 DOI: 10.1021/acs.jpclett.2c03522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Layered two-dimensional (2D) materials with interlayer channels at the nanometer scale offer an ideal platform to control ion transport behaviors, including high-precision separation, ultrafast diffusion, and tunable permeation flux, which show great potential for energy conversion and storage, water treatment, catalysis, biosynthesis, and sensing. Recent advances in controlling the structure and functionality of 2D nanofluidic channels sustainably open doors for more revolutionary applications. In this Perspective, we first present a brief introduction to the fundamental mechanisms for ion transport in 2D nanofluidic channels and an overview of state-of-the-art assembly technologies of nanochannel membranes. We then point out new avenues for developing advanced nanofluidics, combining molecular-level cross-linking, and surface modification in nanoconfinement. Finally, we outline the potential applications of these 2D nanofluidic channel membranes and their technical challenges that need to be addressed to afford for practical applications.
Collapse
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Haoyang Ling
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yanglansen Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
3
|
Xin W, Jiang L, Wen L. Engineering Bio‐inspired Self‐assembled Nanochannels for Smart Ion Transport. Angew Chem Int Ed Engl 2022; 61:e202207369. [DOI: 10.1002/anie.202207369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
4
|
Zhang J, Liu W, Dai J, Xiao K. Nanoionics from Biological to Artificial Systems: An Alternative Beyond Nanoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200534. [PMID: 35723422 PMCID: PMC9376752 DOI: 10.1002/advs.202200534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ion transport under nanoconfined spaces is a ubiquitous phenomenon in nature and plays an important role in the energy conversion and signal transduction processes of both biological and artificial systems. Unlike the free diffusion in continuum media, anomalous behaviors of ions are often observed in nanostructured systems, which is governed by the complex interplay between various interfacial interactions. Conventionally, nanoionics mainly refers to the study of ion transport in solid-state nanosystems. In this review, to extent this concept is proposed and a new framework to understand the phenomena, mechanism, methodology, and application associated with ion transport at the nanoscale is put forward. Specifically, here nanoionics is summarized into three categories, i.e., biological, artificial, and hybrid, and discussed the characteristics of each system. Compared with nanoelectronics, nanoionics is an emerging research field with many theoretical and practical challenges. With this forward-looking perspective, it is hoped that nanoionics can attract increasing attention and find wide range of applications as nanoelectronics.
Collapse
Affiliation(s)
- Jianrui Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Wenchao Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Jiqing Dai
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Kai Xiao
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| |
Collapse
|
5
|
Xin W, Jiang L, Wen L. Engineering Bioinspired Self‐assembled Nanochannels for Smart Ion Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weiwen Xin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science 29 Zhongguancun East Road, Haidian District, Beijing, China 100190 Beijing CHINA
| | - Lei Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Liping Wen
- Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired materials and interfacial science 29 Zhongguancun East Road, Haidian District 100190 Beijing CHINA
| |
Collapse
|
6
|
Ding D, Gao P, Ma Q, Wang D, Xia F. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804878. [PMID: 30756522 DOI: 10.1002/smll.201804878] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Indexed: 05/12/2023]
Abstract
Solid-state ion nanochannels/nanopores, the biomimetic products of biological ion channels, are promising materials in real-world applications due to their robust mechanical and controllable chemical properties. Functionalizations of solid-state ion nanochannels/nanopores by biomolecules pave a wide way for the introduction of varied properties from biomolecules to solid-state ion nanochannels/nanopores, making them smart in response to analytes or external stimuli and regulating the transport of ions/molecules. In this review, two features for nanochannels/nanopores functionalized by biomolecules are abstracted, i.e., specificity and signal amplification. Both of the two features are demonstrated from three kinds of nanochannels/nanopores: nucleic acid-functionalized nanochannels/nanopores, protein-functionalized nanochannels/nanopores, and small biomolecule-functionalized nanochannels/nanopores, respectively. Meanwhile, the fundamental mechanisms of these combinations between biomolecules and nanochannels/nanopores are explored, providing reasonable constructs for applications in sensing, transport, and energy conversion. And then, the techniques of functionalizations and the basic principle about biomolecules onto the solid-state ion nanochannels/nanopores are summarized. Finally, some views about the future developments of the biomolecule-functionalized nanochannels/nanopores are proposed.
Collapse
Affiliation(s)
- Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Qun Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires. Anal Bioanal Chem 2018; 411:4041-4048. [DOI: 10.1007/s00216-018-1494-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/16/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
|
8
|
Pérez-Mitta G, Marmisollé WA, Albesa AG, Toimil-Molares ME, Trautmann C, Azzaroni O. Phosphate-Responsive Biomimetic Nanofluidic Diodes Regulated by Polyamine-Phosphate Interactions: Insights into Their Functional Behavior from Theory and Experiment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702131. [PMID: 29024459 DOI: 10.1002/smll.201702131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/09/2017] [Indexed: 05/12/2023]
Abstract
There is currently high interest in developing nanofluidic devices whose iontronic output is defined by biological interactions. The fabrication of a phosphate responsive nanofluidic diode by using the biological relevant amine-phosphate interactions is shown. The fabrication procedure includes the modification of a track-etched asymmetric (conical) nanochannel with polyallylamine (PAH) by electrostatic self-assembly. PAH is the arcaetypical model of polyamine and it is further used to address the nanochannels with phosphate responsivity. In order to explore the influence that phosphate in solution has in the conductance of the modified nanochannels, current-voltage measurements using different concentrations of phosphates are performed. Furthermore, to have a complete physicochemical understanding of the system, experimental data is analyzed using a continuous model based on Poison-Nernst-Planck equations and compared with results obtained from stochastic Monte Carlo simulations.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, Boulevard 113 y 64, 1900, La Plata, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, Boulevard 113 y 64, 1900, La Plata, Argentina
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, Boulevard 113 y 64, 1900, La Plata, Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, Boulevard 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
9
|
Zhang J, Shu YG. Highly sensitive detection of NT-proBNP by molecular motor. Genes Dis 2016; 4:37-40. [PMID: 30258907 PMCID: PMC6136598 DOI: 10.1016/j.gendis.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022] Open
Abstract
FoF1-ATPase is an active rotary motor, and generates three-ATP for each rotation. At saturated substrate concentration, the motor can achieve about 103 r.p.m, which means one motor can generate about 105 ATP molecules during 30 min. Here, we constituted a novel nanodevice with a molecular rotary motor and a “battery”, FoF1-ATPase and chromatophore, and presented a novel method of sandwich type rotary biosensor based on ε subunit with one target-to-one motor, in which one target corresponds 105 ATP molecules as detection signals during 30 min. The target such as NT-proBNP detection demonstrated that this novel nanodevice has potential to be developed into an ultrasensitive biosensor to detect low expressed targets.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, 100026, China
| | - Yao-Gen Shu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Corresponding author.
| |
Collapse
|
10
|
Xiao X, Nie G, Zhang X, Tian D, Li H. Protein Adsorption Switch Constructed by a Pillar[5]arene-Based Host-Guest Interaction. Chemistry 2015; 22:941-5. [DOI: 10.1002/chem.201504076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Xuan Xiao
- Key Laboratory of Pesticide and Chemical Biology (CCNU); Ministry of Education; College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Guanrong Nie
- Key Laboratory of Pesticide and Chemical Biology (CCNU); Ministry of Education; College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Xiaoyan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU); Ministry of Education; College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU); Ministry of Education; College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU); Ministry of Education; College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| |
Collapse
|
11
|
Bilayer membrane interactions with nanofabricated scaffolds. Chem Phys Lipids 2015; 192:75-86. [DOI: 10.1016/j.chemphyslip.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/17/2023]
|
12
|
Kudr J, Skalickova S, Nejdl L, Moulick A, Ruttkay-Nedecky B, Adam V, Kizek R. Fabrication of solid-state nanopores and its perspectives. Electrophoresis 2015; 36:2367-79. [DOI: 10.1002/elps.201400612] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Sylvie Skalickova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
13
|
Zeng L, Yang Z, Zhang H, Hou X, Tian Y, Yang F, Zhou J, Li L, Jiang L. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:793-801. [PMID: 24031024 DOI: 10.1002/smll.201301647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.
Collapse
Affiliation(s)
- Lu Zeng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, (PR China)
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo W, Tian Y, Jiang L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc Chem Res 2013; 46:2834-46. [PMID: 23713693 DOI: 10.1021/ar400024p] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct different environmental conditions in the electrolyte solutions on either side of the nanochannel. The novel and well-controlled nanofluidic phenomena have become the foundation for many promising applications, and we have highlighted several representative examples. Inspired by the electrogenic cell of the electric eel, we have demonstrated a proof-of-concept nanofluidic reverse electrodialysis system (NREDS) that converts salinity gradient energy into electricity by means of net diffusion current. We have also constructed chirality analysis systems into nanofluidic architectures and monitored these sensing events as the change in the degree of ionic current rectification. Moreover, we have developed a biohybrid nanosystem, in which we reconstituted the F0F1-ATPase on a liposome-coated, solid-state nanoporous membrane. By applying a transmembrane proton concentration gradient, the biohybrid nanodevice can synthesize ATP in vitro. These findings have improved our understanding of the asymmetric ion transport phenomena in synthetic nanofluidic systems and offer innovative insights into the design of functional nanofluidic devices.
Collapse
Affiliation(s)
- Wei Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
15
|
Abstract
Abstract
In this review, we focus on the confined water that exists in one-dimensional micro/nano composite structures, particularly inside biological nanochannels. Using these nanochannels as inspiration, we discuss a strategy for the design and construction of biomimetic smart nanochannels. Unique features of the inner surfaces of a nanochannel's wall have similar properties to living systems. Importantly, the abiotic analogs have potential applications in, for example, sensing, energy conversion and filtering.
Collapse
Affiliation(s)
- Liping Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry & Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
16
|
Afshar Farniya A, Esplandiu MJ, Reguera D, Bachtold A. Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. PHYSICAL REVIEW LETTERS 2013; 111:168301. [PMID: 24182306 DOI: 10.1103/physrevlett.111.168301] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Catalytic engines can use hydrogen peroxide as a chemical fuel in order to drive motion at the microscale. The chemo-mechanical actuation is a complex mechanism based on the interrelation between catalytic reactions and electro-hydrodynamics phenomena. We studied catalytic micropumps using fluorescence confocal microscopy to image the concentration of protons in the liquid. In addition, we measured the motion of particles with different charges in order to map the spatial distributions of the electric field, the electrostatic potential and the fluid flow. The combination of these two techniques allows us to contrast the gradient of the concentration of protons against the spatial variation in the electric field. We present numerical simulations that reproduce the experimental results. Our work sheds light on the interrelation between the different processes at work in the chemomechanical actuation of catalytic pumps. Our experimental approach could be used to study other electrochemical systems with heterogeneous electrodes.
Collapse
Affiliation(s)
- A Afshar Farniya
- ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
17
|
Wen L, Sun Z, Han C, Imene B, Tian D, Li H, Jiang L. Fabrication of Layer-by-Layer Assembled Biomimetic Nanochannels for Highly Sensitive Acetylcholine Sensing. Chemistry 2013; 19:7686-90. [DOI: 10.1002/chem.201300528] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Indexed: 11/08/2022]
|
18
|
|