1
|
Maestro B, Zamora-Carreras H, Jiménez MÁ, Sanz JM. Inter-hairpin linker sequences determine the structure of the ββ-solenoid fold: a "bottom-up" study of pneumococcal LytA choline-binding module. Int J Biol Macromol 2021; 190:679-692. [PMID: 34506863 DOI: 10.1016/j.ijbiomac.2021.08.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022]
Abstract
The ββ-solenoid structures are part of many proteins involved in the recognition of bacterial cell wall. They are elongated polypeptides consisting of repeated β-hairpins connected by linker sequences and disposed around a superhelical axis stabilised by short-range interactions. Among the most studied ββ-solenoids are those belonging to the family of choline-binding modules (CBMs) from the respiratory pathogen Streptococcus pneumoniae (pneumococcus) and its bacteriophages, and their properties have been employed to develop several biotechnological and biomedical tools. We have carried out a theoretical, spectroscopic and thermodynamic study of the ββ-solenoid structure of the CBM from the pneumococcal LytA autolysin using peptides of increasing length containing 1-3 repeats of this structure. Our results show that hints of native-like tertiary structure are only observed with a minimum of three β-hairpins, corresponding to one turn of the solenoid superhelix, and identify the linker sequences between hairpins as the major directors of the solenoid folding. This study paves the way for the rational structural engineering of ββ-solenoids aimed to find novel applications.
Collapse
Affiliation(s)
- Beatriz Maestro
- Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Héctor Zamora-Carreras
- Instituto de Química-Física "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química-Física "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain.
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
2
|
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. Chem Rev 2019; 119:11391-11441. [PMID: 31556597 DOI: 10.1021/acs.chemrev.9b00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin. The diversity of potential building blocks and innumerable possibilities for design, along with the fact that the area is relatively underexplored, make peptide dendrimers sought-after candidates for various applications. This review summarizes the stepwise evolution of peptidic dendrimers along with their multifaceted applications in various fields. Further, the introduction of biomacromolecules such as proteins to a dendritic scaffold, resulting in complex macromolecules with discrete molecular weights, is an altogether new addition to the area of organic chemistry. The synthesis of highly complex and fully folded biomacromolecules on a dendritic scaffold requires expertise in synthetic organic chemistry and biology. Presently, there are only a handful of examples of protein dendrimers; we believe that these limited examples will fuel further research in this area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Ram P Verma
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Govind P Maurya
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Jisha Babu
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
3
|
de Gracia Retamosa M, Díez-Martínez R, Maestro B, García-Fernández E, de Waal B, Meijer EW, García P, Sanz JM. Aromatic Esters of Bicyclic Amines as Antimicrobials against Streptococcus pneumoniae. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
de Gracia Retamosa M, Díez-Martínez R, Maestro B, García-Fernández E, de Waal B, Meijer EW, García P, Sanz JM. Aromatic Esters of Bicyclic Amines as Antimicrobials against Streptococcus pneumoniae. Angew Chem Int Ed Engl 2015; 54:13673-7. [PMID: 26377931 DOI: 10.1002/anie.201505700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/30/2015] [Indexed: 11/06/2022]
Abstract
A double approach was followed in the search of novel inhibitors of the surface choline-binding proteins (CBPs) of Streptococcus pneumoniae (pneumococcus) with antimicrobial properties. First, a library of 49 rationally-designed esters of alkyl amines was screened for their specific binding to CBPs. The best binders, being esters of bicyclic amines (EBAs), were then tested for their in vitro effect on pneumococcal growth and morphology. Second, the efficiency of EBA-induced CBP inhibition was enhanced about 45,000-fold by multivalency effects upon synthesizing a poly(propylene imine) dendrimer containing eight copies of an atropine derivative. Both approaches led to compounds that arrest bacterial growth, dramatically decrease cell viability, and exhibit a protection effect in animal disease models, demonstrating that the pneumococcal CBPs are adequate targets for the discovery of novel antimicrobials that overcome the currently increasing antimicrobial resistance issues.
Collapse
Affiliation(s)
- María de Gracia Retamosa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche (Spain).,Present address: Universidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC) (Spain)
| | - Roberto Díez-Martínez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC) and CIBER de Enfermedades Respiratorias (CibeRes), Ramiro de Maeztu, 9, 28040 Madrid (Spain)
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche (Spain)
| | - Esther García-Fernández
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC) and CIBER de Enfermedades Respiratorias (CibeRes), Ramiro de Maeztu, 9, 28040 Madrid (Spain)
| | - Bas de Waal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven (The Netherlands)
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven (The Netherlands)
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC) and CIBER de Enfermedades Respiratorias (CibeRes), Ramiro de Maeztu, 9, 28040 Madrid (Spain).
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche (Spain).
| |
Collapse
|
5
|
Dang DT, Bosmans RPG, Moitzi C, Voets IK, Brunsveld L. Solution structure of a cucurbit[8]uril induced compact supramolecular protein dimer. Org Biomol Chem 2014; 12:9341-4. [PMID: 25337659 DOI: 10.1039/c4ob01729c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supramolecular assembly of a beta-barrel protein via cucurbit[8]uril results in compact z-shaped protein dimers. SAXS data reveal the formation of a well ordered protein dimer, notwithstanding being connected by a reversible and flexible peptide linker, and highlight the supramolecular induced interplay of the proteins, analogous to covalently linked proteins.
Collapse
Affiliation(s)
- Dung T Dang
- Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Petkau-Milroy K, Uhlenheuer DA, Spiering AJH, Vekemans JAJM, Brunsveld L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chem Sci 2013. [DOI: 10.1039/c3sc50891a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Barnard A, Smith DK. Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Barnard A, Smith DK. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. Angew Chem Int Ed Engl 2012; 51:6572-81. [PMID: 22689381 DOI: 10.1002/anie.201200076] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/12/2022]
Abstract
Multivalency is a powerful strategy for achieving high-affinity molecular recognition in biological systems. Recently, attention has begun to focus on using self-assembly rather than covalent scaffold synthesis to organize multiple ligands. This approach has a number of advantages, including ease of synthesis/assembly, tunability of nanostructure morphology and ligands, potential to incorporate multiple active units, and the responsive nature of self-assembly. We suggest that self-assembled multivalency is a strategy of fundamental importance in the design of synthetic nanosystems to intervene in biological pathways and has potential applications in nanomedicine.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
9
|
Dang DT, Schill J, Brunsveld L. Cucurbit[8]uril-mediated protein homotetramerization. Chem Sci 2012. [DOI: 10.1039/c2sc20625k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Song C, Zi YQ, Gao HW. MC-LR@HSA: non-covalent interaction and effect. RSC Adv 2012. [DOI: 10.1039/c2ra20874a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|