1
|
Yuan Q, Zhang Z, Kong X, Ling Z, Zhang H, Cheng L, Wang XB. Photodetachment photoelectron spectroscopy shows isomer-specific proton-coupled electron transfer reactions in phenolic nitrate complexes. Commun Chem 2024; 7:176. [PMID: 39122780 PMCID: PMC11315994 DOI: 10.1038/s42004-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of phenolic compounds is one of the most important reactions prevalent in various biological processes, often explicitly coupled with proton transfers (PTs). Quantitative descriptions and molecular-level understanding of these proton-coupled electron transfer (PCET) reactions have been challenging. This work reports a direct observation of PCET in photodetachment (PD) photoelectron spectroscopy (PES) of hydrogen-bonded phenolic (ArOH) nitrate (NO3-) complexes, in which a much slower rising edge provides a spectroscopic signature to evidence PCET. Electronic structure calculations unveil the PCET processes to be isomer-specific, occurred only in those with their HOMOs localized on ArOH, leading to charge-separated transient states ArOH•+·NO3- triggered by ionizing phenols while simultaneously promoting PT from ArOH•+ to NO3-. Importantly, this study showcases that gas-phase PD-PES is a generic means enabling to identify PCET reactions with explicit structural and binding information.
Collapse
Affiliation(s)
- Qinqin Yuan
- Department of Chemistry, Anhui University, 230601, Hefei, China
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ziheng Zhang
- Department of Chemistry, Anhui University, 230601, Hefei, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, 455000, Anyang, China
| | - Zicheng Ling
- Department of Chemistry, Anhui University, 230601, Hefei, China
| | - Hanhui Zhang
- Institute of Advanced Science Facilities, 518107, Shenzhen, China.
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 230601, Hefei, China.
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
2
|
Kim J, Woo KC, Kim KK, Kim SK. πσ*-Mediated Nonadiabatic Tunneling Dynamics of Thiophenols in S 1: The Semiclassical Approaches. J Phys Chem A 2022; 126:9594-9604. [PMID: 36534791 DOI: 10.1021/acs.jpca.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The S-H bond tunneling predissociation dynamics of thiophenol and its ortho-substituted derivatives (2-fluorothiophenol, 2-methoxythiophenol, and 2-chlorothiphenol) in S1 (ππ*) where the H atom tunneling is mediated by the nearby S2 (πσ*) state (which is repulsive along the S-H bond extension coordinate) have been investigated in a state-specific way using the picosecond time-resolved pump-probe spectroscopy for the jet-cooled molecules. The effects of the specific vibrational mode excitations and the SH/SD substitutions on the S-H(D) bond rupture tunneling dynamics have been interrogated, giving deep insights into the multidimensional aspects of the S1/S2 conical intersection, which also shapes the underlying adiabatic tunneling potential energy surfaces (PESs). The semiclassical tunneling rate calculations based on the Wentzel-Kramers-Brillouin (WKB) approximation or Zhu-Nakamura (ZN) theory have been carried out based on the ab initio PESs calculated in the (one, two, or three) reduced dimensions to be compared with the experiment. Though the quantitative experimental results could not be reproduced satisfactorily by the present calculations, the qualitative trends among different molecules in terms of the behavior of the tunneling rate versus the (adiabatic) barrier height or the number of PES dimensions could be rationalized. Most interestingly, the H/D kinetic isotope effect observed in the tunneling rate could be much better explained by the ZN theory compared to the WKB approximation, indicating that the nonadiabatic coupling matrix elements should be invoked for understanding the tunneling dynamics taking place in the proximity of the conical intersection.
Collapse
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Kuk Ki Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| |
Collapse
|
3
|
Siegel RE, Pattanayak S, Berben LA. Reactive Capture of CO 2: Opportunities and Challenges. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rachel E. Siegel
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Santanu Pattanayak
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Louise A. Berben
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| |
Collapse
|
4
|
Zhao YY, He JH, Lu JM, Zhao Y, He J, Lu J. Mussel-inspired Binder with concerted proton-electron transfer for pH-universal Overall H2O2 Synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Phipps CA, Hofsommer DT, Toda MJ, Nkurunziza F, Shah B, Spurgeon JM, Kozlowski PM, Buchanan RM, Grapperhaus CA. Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH. Inorg Chem 2022; 61:9792-9800. [PMID: 35687329 DOI: 10.1021/acs.inorgchem.2c01326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.
Collapse
Affiliation(s)
- Christine A Phipps
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bhoomi Shah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
6
|
Weitkamp RF, Neumann B, Stammler H, Hoge B. Non-coordinated and Hydrogen Bonded Phenolate Anions as One-Electron Reducing Agents. Chemistry 2021; 27:6465-6478. [PMID: 33368714 PMCID: PMC8247865 DOI: 10.1002/chem.202005123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Indexed: 11/29/2022]
Abstract
In this work, the syntheses of non-coordinated electron-rich phenolate anions via deprotonation of the corresponding alcohols with an extremely powerful perethyl tetraphosphazene base (Schwesinger base) are reported. The application of uncharged phosphazenes renders the selective preparation of anionic phenol-phenolate and phenolate hydrates possible, which allows for the investigation of hydrogen bonding in these species. Hydrogen bonding brings about decreased redox potentials relative to the corresponding non-coordinated phenolate anions. The latter show redox potentials of up to -0.72(1) V vs. SCE, which is comparable to that of zinc metal, thus qualifying their application as organic zinc mimics. We utilized phenolates as reducing agents for the generation of radical anions in addition to the corresponding phenoxyl radicals. A tetracyanoethylene radical anion salt was synthesized and fully characterized as a representative example. We also present the activation of sulfur hexafluoride (SF6 ) with phenolates in a SET reaction, in which the nature of the respective phenolate determines whether simple fluorides or pentafluorosulfanide ([SF5 ]- ) salts are formed.
Collapse
Affiliation(s)
- Robin F. Weitkamp
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Berthold Hoge
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
7
|
Haque MA, Morozova K, Ferrentino G, Scampicchio M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202060600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Md Azizul Haque
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
- Department of Food Technology and Nutritional Science (FTNS) Mawlana Bhashani Science and Technology University (MBSTU) Tangail 1902 Bangladesh
| | - Ksenia Morozova
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| |
Collapse
|
8
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Jana NC, Brandão P, Frontera A, Panja A. A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes. Dalton Trans 2020; 49:14216-14230. [PMID: 33025999 DOI: 10.1039/d0dt02431g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper describes the synthesis and structural characterization of four new manganese(iii) complexes (1-4) derived from N3O donor Schiff base ligands and their biomimetic catalytic activities related to catechol oxidase and phenoxazinone synthase. X-ray crystallography reveals that the Schiff bases coordinate the metal centre in a tridentate fashion, leaving the pendant tertiary amine nitrogen atom either protonated or free to balance the charge of the system, and these pendant triamines participate in strong hydrogen bonding interactions in the solid state. The hydrogen bonding ability of the pendant triamines at the second coordination sphere plays a crucial role in the substrate recognition and the stability of the complex-substrate intermediates. The effect of substitution at the phenolate ring towards the redox potential of the metal centre and the catalytic activity of these complexes has been observed. Detailed kinetic studies further disclose the deuterium kinetic isotope effect in which the transfer of the proton along the hydrogen bond from the substrates to the pendant triamine group at the secondary coordination sphere occurs at the key step in the catalytic reaction. The present reactivity nicely resembles the biochemical reactivities in the natural system in which a concerted electron and proton transfer to different species is usually observed. Remarkably, although some sort of influence of the secondary coordination sphere on catalytic activity has been reported mimicking the function of these metalloenzymes, such a direct participation of the secondary coordination sphere, particularly in modelling phenoxazinone synthase, has not been observed to date.
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa, km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India
| |
Collapse
|
10
|
Zanut A, Fiorani A, Canola S, Saito T, Ziebart N, Rapino S, Rebeccani S, Barbon A, Irie T, Josel HP, Negri F, Marcaccio M, Windfuhr M, Imai K, Valenti G, Paolucci F. Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nat Commun 2020; 11:2668. [PMID: 32472057 PMCID: PMC7260178 DOI: 10.1038/s41467-020-16476-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Andrea Fiorani
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Sofia Canola
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Toshiro Saito
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | - Nicole Ziebart
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Stefania Rapino
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Sara Rebeccani
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Takashi Irie
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | | | - Fabrizia Negri
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Massimo Marcaccio
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | | | - Kyoko Imai
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
11
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
12
|
Schneider J, Bangle RE, Swords WB, Troian-Gautier L, Meyer GJ. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. J Am Chem Soc 2019; 141:9758-9763. [DOI: 10.1021/jacs.9b01296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| |
Collapse
|
13
|
Shi RRS, Tessensohn ME, Lauw SJL, Foo NABY, Webster RD. Tuning the reduction potential of quinones by controlling the effects of hydrogen bonding, protonation and proton-coupled electron transfer reactions. Chem Commun (Camb) 2019; 55:2277-2280. [PMID: 30720024 DOI: 10.1039/c8cc09188a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An all-organic cell comprising 2,3-dimethyl-1,4-napthoquinone and pyrano[3,2-f]chromene as electroactive elements exhibited a good combination of large cell voltage and stability of the reduced quinone upon the addition of diethyl malonate (a weak organic acid), as compared to the addition of trifluoroethanol (which led to a high cell potential but low stability via strong hydrogen bonding interactions) and the addition of trifluoroacetic acid (which led to a lower cell potential but high stability through proton transfer).
Collapse
Affiliation(s)
- Raymond R S Shi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | | | | | | | |
Collapse
|
14
|
Lymar SV, Ertem MZ, Polyansky DE. Solvent-dependent transition from concerted electron-proton to proton transfer in photoinduced reactions between phenols and polypyridine Ru complexes with proton-accepting sites. Dalton Trans 2018; 47:15917-15928. [PMID: 30375615 DOI: 10.1039/c8dt03858a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bimolecular rate coefficients (kobsq) for quenching the metal-to-ligand charge transfer excited states of two Ru polypyridine complexes containing H-bond accepting sites by six p-substituted phenols exhibit abrupt deviations from the expected linear correlations of log kobsq with phenol's Hammett σp constant. This pattern is attributed to a transition of the quenching mechanism from a concerted electron-proton transfer (EPT) to a proton transfer (PT); the latter becomes predominant for the most acidic phenols in acetonitrile, but not in dichloromethane. This assertion is supported by a detailed thermochemical analysis, which also excludes the quenching pathways involving electron transfer from phenols with or without deprotonation of phenols to the solvent, either concerted or sequential. The transition from EPT to PT upon the σp increase is consistent/supported by the magnitudes of the measured and computed PhOH/OD kinetic isotope effects and by the observed reduction of the EPT product yields upon replacing the low σp methoxyphenol by the high σp nitrophenol. In addition to modulating the relative contribution of the EPT and PT quenching pathways, the solvent strongly affects the bimolecular rate coefficients for the EPT quenching proper. Unlike with H-atom transfer reactions, this kinetic solvent effect could not be quantitatively accounted for by the phenol-solvent H-bonding alone, which suggests a solvent effect on the H-bonding constants in the phenol-Ru complex precursor exciplexes and/or on the unimolecular EPT rate coefficients within these exciplexes.
Collapse
Affiliation(s)
- Sergei V Lymar
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.
| | | | | |
Collapse
|
15
|
Olshansky L, Huerta-Lavorie R, Nguyen AI, Vallapurackal J, Furst A, Tilley TD, Borovik AS. Artificial Metalloproteins Containing Co 4O 4 Cubane Active Sites. J Am Chem Soc 2018; 140:2739-2742. [PMID: 29401385 PMCID: PMC5866047 DOI: 10.1021/jacs.7b13052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin-streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII-OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e-/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII-OH2 groups. With this variant, multi-e-/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e-/multi-H+ reactivity.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Raúl Huerta-Lavorie
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Andy I Nguyen
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Jaicy Vallapurackal
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Ariel Furst
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - A S Borovik
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
16
|
Thiyagarajan SK, Suresh R, Ramanan V, Ramamurthy P. Deciphering the incognito role of water in a light driven proton coupled electron transfer process. Chem Sci 2018; 9:910-921. [PMID: 29629158 PMCID: PMC5873145 DOI: 10.1039/c7sc03161k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 01/26/2023] Open
Abstract
Light induced multisite electron proton transfer in two different phenol (simple and phenol carrying an intramolecularly hydrogen bonded base) pendants on acridinedione dye (ADD) and an NADH analogue was studied by following fluorescence quenching dynamics in an ultrafast timescale. In a simple phenol derivative (ADDOH), photo-excited acridinedione acquires an electron from phenol intramolecularly, coupled with the transfer of a proton to solvent water. But in a phenol carrying hydrogen bonded base (ADDDP), both electron and proton transfer occur completely intramolecularly. The sequence of this electron and proton transfer process was validated by discerning the pH dependency of the reaction kinetics. Since photo-excited ADDs are stronger oxidants, the sequential electron first proton transfer mechanism (ETPT) was observed in ADDOH and hence there is no change in the PCET reaction kinetics kETPT ∼ 6.57 × 109 s-1 in the entire pH range (pH 2-12). But the phenol carrying hydrogen bonded base (ADDDP) unleashes concerted electron proton transfer where the PCET reaction rate decreases upon decreasing the pH below its pKa. Noticeably, the concerted EPT process in ADDDP mimics the donor side of photosystem II and it occurs by two distinct pathways: (i) through direct intramolecular hydrogen bonding between the phenol and amine, kDEPT ∼ 12.5 × 1010 s-1 and (ii) through the bidirectional hydrogen bond extended by the water molecule trapped in between the proton donor and acceptor, which mediates the proton transfer and serves as a proton wire, kWMEPT ∼ 2.85 × 1010 s-1. These results unravel the incognito role played by water in mediating the proton transfer process when the structural elements do not favor direct hydrogen bonding between the proton donor and acceptor in a concerted PCET reaction.
Collapse
Affiliation(s)
- Senthil Kumar Thiyagarajan
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Raghupathy Suresh
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Vadivel Ramanan
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Perumal Ramamurthy
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| |
Collapse
|
17
|
Sirbu D, Woodford OJ, Benniston AC, Harriman A. Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY. Photochem Photobiol Sci 2018; 17:750-762. [DOI: 10.1039/c8pp00162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two Chromophore-Quencher Conjugates (CQCs) have been synthesized by covalent attachment of the anti-oxidant dibutylated-hydroxytoluene (BHT) to a pyrrole-BF2 chromophore (BOPHY) in an effort to protect the latter against photofading.
Collapse
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Owen J. Woodford
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Andrew C. Benniston
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Anthony Harriman
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| |
Collapse
|
18
|
Shen CC, Tsai TT, Wu JY, Ho JW, Chen YW, Cheng PY. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation. J Chem Phys 2017; 147:164302. [PMID: 29096460 DOI: 10.1063/1.5001375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH3) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
Collapse
Affiliation(s)
- Ching-Chi Shen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Tsung-Ting Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jr-Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Yi-Wei Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| |
Collapse
|
19
|
Verma S, Aute S, Das A, Ghosh HN. Proton-Coupled Electron Transfer in a Hydrogen-Bonded Charge-Transfer Complex. J Phys Chem B 2016; 120:10780-10785. [DOI: 10.1021/acs.jpcb.6b06032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandeep Verma
- Radiation
and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sunil Aute
- CSIR-National Chemical Laboratory, Pune 411008, India
| | - Amitava Das
- CSIR-National Chemical Laboratory, Pune 411008, India
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Hirendra N. Ghosh
- Radiation
and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
20
|
Patil N, Cordella D, Aqil A, Debuigne A, Admassie S, Jérôme C, Detrembleur C. Surface- and Redox-Active Multifunctional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01857] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nagaraj Patil
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Daniela Cordella
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Abdelhafid Aqil
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Antoine Debuigne
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Shimelis Admassie
- Biomolecular and organic electronics, IFM, Linköping University, S-581 83 Linköping, Sweden
- Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Christine Jérôme
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Centre for Education
and Research on Macromolecules (CERM), CESAM Research Unit, Department
of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| |
Collapse
|
21
|
Elgrishi N, McCarthy BD, Rountree ES, Dempsey JL. Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00778] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Noémie Elgrishi
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Brian D. McCarthy
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric S. Rountree
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
22
|
Soetbeer J, Dongare P, Hammarström L. Marcus-type driving force correlations reveal the mechanism of proton-coupled electron transfer for phenols and [Ru(bpy) 3] 3+ in water at low pH. Chem Sci 2016; 7:4607-4612. [PMID: 30155108 PMCID: PMC6013771 DOI: 10.1039/c6sc00597g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/01/2016] [Indexed: 11/21/2022] Open
Abstract
We examined PCET between a series of phenol derivatives and photogenerated [Ru(bpy)3]3+ in low pH (≤4) water using the laser flash-quench technique.
Proton-coupled electron transfer (PCET) from tyrosine and other phenol derivatives in water is an important elementary reaction in chemistry and biology. We examined PCET between a series of phenol derivatives and photogenerated [Ru(bpy)3]3+ in low pH (≤4) water using the laser flash-quench technique. From an analysis of the kinetic data using a Marcus-type free energy relationship, we propose that our model system follows a stepwise electron transfer-proton transfer (ETPT) pathway with a pH independent rate constant at low pH in water. This is in contrast to the concerted or proton-first (PTET) mechanisms that often dominate at higher pH and/or with buffers as primary proton acceptors. The stepwise mechanism remains competitive despite a significant change in the pKa and redox potential of the phenols which leads to a span of rate constants from 1 × 105 to 2 × 109 M–1 s–1. These results support our previous studies which revealed separate mechanistic regions for PCET reactions and also assigned phenol oxidation by [Ru(bpy)3]3+ at low pH to a stepwise PCET mechanism.
Collapse
Affiliation(s)
- Janne Soetbeer
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| | - Prateek Dongare
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| |
Collapse
|
23
|
Neidlinger A, Förster C, Heinze K. How Hydrogen Bonds Affect Reactivity and Intervalence Charge Transfer in Ferrocenium-Phenolate Radicals. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Das D, Pattanayak S, Singh KK, Garai B, Sen Gupta S. Electrocatalytic water oxidation by a molecular cobalt complex through a high valent cobalt oxo intermediate. Chem Commun (Camb) 2016; 52:11787-11790. [DOI: 10.1039/c6cc05773j] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biuret-modified tetraamidomacrocyclic cobalt complex [CoIII-bTAML]− is shown to catalyze electrochemical water oxidation at basic pH leading to the formation of O2.
Collapse
Affiliation(s)
- Debasree Das
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Santanu Pattanayak
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Kundan K. Singh
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Bikash Garai
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Sayam Sen Gupta
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
25
|
Yue Y, Novianti ML, Tessensohn ME, Hirao H, Webster RD. Optimizing the lifetimes of phenoxonium cations derived from vitamin E via structural modifications. Org Biomol Chem 2015; 13:11732-9. [PMID: 26480893 DOI: 10.1039/c5ob01868d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic synthesis of a number of new phenolic compounds with structures similar to vitamin E led to the identification of several sterically hindered compounds that when electrochemically oxidised in acetonitrile in a -2e(-)/-H(+) process formed phenoxonium diamagnetic cations that were resistant to hydrolysis reactions. The reactivity of the phenoxonium ions was ascertained by performing cyclic voltammetric scans during the addition of carefully controlled quantities of water into acetonitrile solutions, with the data modelled using digital simulation techniques.
Collapse
Affiliation(s)
- Yanni Yue
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | | | | | |
Collapse
|
26
|
Neidlinger A, Kienz T, Heinze K. Spin Trapping of Carbon-Centered Ferrocenyl Radicals with Nitrosobenzene. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Neidlinger
- Institute of Inorganic and
Analytical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Torben Kienz
- Institute of Inorganic and
Analytical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Katja Heinze
- Institute of Inorganic and
Analytical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
27
|
Oliver TAA, Zhang Y, Roy A, Ashfold MNR, Bradforth SE. Exploring Autoionization and Photoinduced Proton-Coupled Electron Transfer Pathways of Phenol in Aqueous Solution. J Phys Chem Lett 2015; 6:4159-4164. [PMID: 26722792 DOI: 10.1021/acs.jpclett.5b01861] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The excited state dynamics of phenol in water have been investigated using transient absorption spectroscopy. Solvated electrons and vibrationally cold phenoxyl radicals are observed upon 200 and 267 nm excitation, but with formation time scales that differ by more than 4 orders of magnitude. The impact of these findings is assessed in terms of the relative importance of autoionization versus proton-coupled electron transfer mechanisms in this computationally tractable model system.
Collapse
Affiliation(s)
- Thomas A A Oliver
- School of Chemistry, University of Bristol , Bristol, BS8 1TS, United Kingdom
| | - Yuyuan Zhang
- University of Southern California , Los Angeles, California 90089, United States
| | - Anirban Roy
- University of Southern California , Los Angeles, California 90089, United States
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol , Bristol, BS8 1TS, United Kingdom
| | - Stephen E Bradforth
- University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Parween A, Mandal TK, Guillot R, Naskar S. Acid–base behavior, electrochemical properties and DFT study of redox non-innocent phenol–imidazole ligands and their Cu complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Liu Y, Liu H, Song K, Xu Y, Shi Q. Theoretical Study of Proton Coupled Electron Transfer Reactions: The Effect of Hydrogen Bond Bending Motion. J Phys Chem B 2015; 119:8104-14. [DOI: 10.1021/acs.jpcb.5b02927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Liu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Hao Liu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Kai Song
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Yang Xu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
30
|
McCarthy BD, Donley CL, Dempsey JL. Electrode initiated proton-coupled electron transfer to promote degradation of a nickel(ii) coordination complex. Chem Sci 2015; 6:2827-2834. [PMID: 29403633 PMCID: PMC5761499 DOI: 10.1039/c5sc00476d] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022] Open
Abstract
A Ni(ii) bisphosphine dithiolate compound degrades into an electrode-adsorbed film that can evolve hydrogen under reducing and protic conditions. An electrochemical study suggests that the degradation mechanism involves an initial concerted proton-electron transfer. The potential susceptibility of Ni-S bonds in molecular hydrogen evolution catalysts to degradation via C-S bond cleavage is discussed.
Collapse
Affiliation(s)
- Brian D McCarthy
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , USA .
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory , Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599-3216 , USA
| | - Jillian L Dempsey
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , USA .
| |
Collapse
|
31
|
Choudhary M, Ul Islam R, Witcomb MJ, Mallick K. In situ generation of a high-performance Pd-polypyrrole composite with multi-functional catalytic properties. Dalton Trans 2014; 43:6396-405. [PMID: 24604337 DOI: 10.1039/c3dt53567c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a bottom up approach for the synthesis of a Pd-polypyrrole nanocomposite material. The composite material was characterized by means of different techniques, such as UV-vis, IR, and Raman spectroscopy, which offered information about the chemical structure of the polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the polymer matrix. During the synthesis of the nanocomposite, the Pd nanoparticles act as a catalyst for a model proton-coupled electron transfer reaction. The Pd-polypyrrole nanocomposite material was also used as a catalyst for the electro-catalytic detection of tryptophan, a precursor for some neurotransmitters.
Collapse
Affiliation(s)
- Meenakshi Choudhary
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa.
| | | | | | | |
Collapse
|
32
|
Tessensohn ME, Lee M, Hirao H, Webster RD. Measuring the Relative Hydrogen-Bonding Strengths of Alcohols in Aprotic Organic Solvents. Chemphyschem 2014; 16:160-8. [DOI: 10.1002/cphc.201402693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 11/11/2022]
|
33
|
Trefz T, Kabir MK, Jain R, Patrick BO, Hicks RG. Unconventional redox properties of hydroquinones with intramolecular OH−N hydrogen bonds. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The redox (chemical and electrochemical) properties of several hydroquinones are reported in which the OH protons are engaged in intramolecular hydrogen bonds to a nitrogen-based acceptor (pyridine or amine). The 1,4-hydroquinones generally undergo reversible oxidation to quinones in which both OH protons have transferred to the pendant bases; the oxidation processes are generally chemically and electrochemically reversible, in stark contrast with normal hydroquinones, which are oxidized irreversibly (via proton loss) to quinones. The oxidation processes, believed to occur in concerted proton/electron transfer steps, are at much lower potentials for the hydrogen-bonded derivatives relative to unsubstituted derivatives. In contrast, isomeric 1,3-hydroquinones (resorcinols) are oxidized irreversibly at relatively high potentials. The stability of some of the 1,4-hydroquinone oxidized species permits their isolation and characterization both spectroscopically and structurally. Somewhat surprisingly, in the oxidized species in which the proton is now located on the nitrogen base, the characterization data indicate that there is no NH−O hydrogen bond. Relationships between the particulars of the redox properties of the hydroquinones (potentials, reversibility/stability) and molecular structure are discussed.
Collapse
Affiliation(s)
- Tyler Trefz
- Department of Chemistry, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Md. Khayrul Kabir
- Department of Chemistry, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Rajsapan Jain
- Department of Chemistry, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Brian O. Patrick
- Crystallography Laboratory, Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Robin G. Hicks
- Department of Chemistry, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
34
|
Chen J, Kuss-Petermann M, Wenger OS. Dependence of Reaction Rates for Bidirectional PCET on the Electron Donor–Electron Acceptor Distance in Phenol–Ru(2,2′-Bipyridine)32+ Dyads. J Phys Chem B 2014; 119:2263-73. [DOI: 10.1021/jp506087t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Chen
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Martin Kuss-Petermann
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| |
Collapse
|
35
|
Lemma SM, Scampicchio M, Bulbarello A, Mason M, Schweikert L. Concerted Determination of the Hydrogen Atom and Electron Transfer Capacity of Lipid Soluble Reducing Agents. ELECTROANAL 2014. [DOI: 10.1002/elan.201400096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Salamone M, Amorati R, Menichetti S, Viglianisi C, Bietti M. Structural and Medium Effects on the Reactions of the Cumyloxyl Radical with Intramolecular Hydrogen Bonded Phenols. The Interplay Between Hydrogen-Bonding and Acid-Base Interactions on the Hydrogen Atom Transfer Reactivity and Selectivity. J Org Chem 2014; 79:6196-205. [DOI: 10.1021/jo5009367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Riccardo Amorati
- Dipartimento di Chimica “G.
Ciamician”, Università di Bologna, Via San Giacomo,
11, I-40126 Bologna, Italy
| | - Stefano Menichetti
- Dipartimento di
Chimica “U. Schiff”, Università di Firenze, Via della
Lastruccia, 3-13, I-50019 Sesto Fiorentino, Italy
| | - Caterina Viglianisi
- Dipartimento di
Chimica “U. Schiff”, Università di Firenze, Via della
Lastruccia, 3-13, I-50019 Sesto Fiorentino, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
37
|
Martínez-González E, Frontana C. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects. Phys Chem Chem Phys 2014; 16:8044-50. [PMID: 24653999 DOI: 10.1039/c3cp55106g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Collapse
Affiliation(s)
- Eduardo Martínez-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquimica, S. Parque Tecnologico Queretaro Sanfandila Pedro Escobedo, Queretaro 76703, Mexico.
| | | |
Collapse
|
38
|
Costentin C, Robert M, Savéant JM, Tard C. Breaking bonds with electrons and protons. Models and examples. Acc Chem Res 2014; 47:271-80. [PMID: 24016042 DOI: 10.1021/ar4001444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides its theoretical interest, the attention currently aroused by proton-coupled electron transfers (PCET reactions) has two main motives. One is a better understanding of biological processes in which PCET reactions are involved, Photosystem II as well as a myriad of other natural systems. The other is directed toward synthetic processes, many of which are related to global energy challenges. Until recently, the analyses of the mechanism and reactivity of PCET reactions have focused on outersphere transfers, those in which no bond between heavy atoms (all atoms with the exception of H) is concomitantly formed or broken. Conversely, reactions in which electron transfer triggers the breaking of a heavy-atom bond with no proton transfer have been extensively analyzed, both theoretically and experimentally. In both cases, strategies have been developed to distinguish between stepwise and concerted pathways. In each case, kinetic models have been devised, allowing the relation between activation and thermodynamic driving force to be established by means of parameters pertaining to the initial and final state. Although many natural and artificial processes include electron transfer, proton transfer, and heavy-atom bond breaking (/formation), no means were offered until recently to analyze the mechanism of such reactions, notably to establish the degree of concertedness of the three constitutive events. Likewise, no kinetic models were available to describe reactions where the three events are concerted. In this Account, we discuss the strategies to distinguish stepwise, partially concerted (when two of the three events are concerted), and totally concerted pathways in these reactions that include electron transfer, proton transfer, and heavy-atom bond breaking. These mechanism analysis methods are illustrated and validated by three examples. First we describe the electrochemical cleavage of an O-O bond in an aliphatic peroxide molecule with a pendant carboxylic acid group that can serve as proton donor for electron transfer and bond breaking. In the second example, we examine the breaking of one of the C-O bonds of CO2 within a multistep process where the reduction of CO2 into CO is catalyzed by an electrogenerated iron(0) porphyrin in the presence of various Brönsted acids. In this case, an intramolecular electron transfer triggers proton transfer and bond cleavage. In the first two examples, all three events are concerted. The third example also involves catalysis. It describes the cleavage of a cobalt-carbon bond in the reduction of chloroacetonitrile catalyzed by an electrogenerated cobalt(I) porphyrin. It illustrates the rather common case where the intermediate formed by the reaction of a transition metal complex with the substrate has to be cleaved to close the catalytic cycle. In the first two examples, all three events are concerted, whereas, in the last case, a partially concerted pathway takes place: proton transfer and bond-breaking (Co-C cleavage) are concerted after an initial electron transfer step. The all-concerted cases require a model that connects the kinetics to the thermodynamic driving force of the reaction. Starting from previous models of outersphere electron transfer, concerted proton-electron transfer, and concerted dissociative electron transfer, we describe a model for all-concerted proton-electron-bond breaking reactions. These pathways skip the high-energy intermediates that occur in stepwise pathways, but could introduce kinetic penalties. The all-concerted model allows one to assess these penalties and the way in which they can be fought by the supplement of driving force offered by concerted proton transfer.
Collapse
Affiliation(s)
- Cyrille Costentin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS N° 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Marc Robert
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS N° 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel Savéant
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS N° 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Cédric Tard
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS N° 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
39
|
Bronner C, Wenger OS. Long-range proton-coupled electron transfer in phenol–Ru(2,2′-bipyrazine)32+ dyads. Phys Chem Chem Phys 2014; 16:3617-22. [DOI: 10.1039/c3cp55071k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Neidlinger A, Ksenofontov V, Heinze K. Proton-Coupled Electron Transfer in Ferrocenium–Phenolate Radicals. Organometallics 2013. [DOI: 10.1021/om400498h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andreas Neidlinger
- Institute of Inorganic
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Vadim Ksenofontov
- Institute of Inorganic
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Staudinger
Weg 9, 55128 Mainz, Germany
| | - Katja Heinze
- Institute of Inorganic
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
41
|
Abstract
Proton-coupled electron transfer (PCET) plays a crucial role in many enzymatic reactions and is relevant for a variety of processes including water oxidation, nitrogen fixation, and carbon dioxide reduction. Much of the research on PCET has focused on transfers between molecules in their electronic ground states, but increasingly researchers are investigating PCET between photoexcited reactants. This Account describes recent studies of excited-state PCET with d(6) metal complexes emphasizing work performed in my laboratory. Upon photoexcitation, some complexes release an electron and a proton to benzoquinone reaction partners. Others act as combined electron-proton acceptors in the presence of phenols. As a result, we can investigate photoinduced PCET involving electron and proton transfer in a given direction, a process that resembles hydrogen-atom transfer (HAT). In other studies, the photoexcited metal complexes merely serve as electron donors or electron acceptors because the proton donating and accepting sites are located on other parts of the molecular PCET ensemble. We and others have used this multisite design to explore so-called bidirectional PCET which occurs in many enzymes. A central question in all of these studies is whether concerted proton-electron transfer (CPET) can compete kinetically with sequential electron and proton transfer steps. Short laser pulses can trigger excited-state PCET, making it possible to investigate rapid reactions. Luminescence spectroscopy is a convenient tool for monitoring PCET, but unambiguous identification of reaction products can require a combination of luminescence spectroscopy and transient absorption spectroscopy. Nevertheless, in some cases, distinguishing between PCET photoproducts and reaction products formed by simple photoinduced electron transfer (ET) (reactions that don't include proton transfer) is tricky. Some of the studies presented here deal directly with this important problem. In one case study we employed a cyclometalated iridium(III) complex. Our other studies with ruthenium(II) complexes and phenols focused on systematic variations of the reaction free energies for the CPET, ET, and proton transfer (PT) steps to explore their influence on the overall PCET reaction. Still other work with rhenium(I) complexes concentrated on the question of how the electronic structure of the metal-to-ligand charge transfer (MLCT) excited states affects PCET. We used covalent rhenium(I)-phenol dyads to explore the influence of the electron donor-electron acceptor distance on bidirectional PCET. In covalent triarylamine-Ru(bpy)₃²⁺/Os(bpy)₃²⁺-anthraquinone triads (bpy = 2,2'-bipyridine), hydrogen-bond donating solvents significantly lengthened the lifetimes of photogenerated electron/hole pairs because of hydrogen-bonding to the quinone radical anion. Until now, comparatively few researchers have investigated this variation of PCET: the strengthening of H-bonds upon photoreduction.
Collapse
Affiliation(s)
- Oliver S. Wenger
- Departement Chemie, Universität Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
42
|
Kuss-Petermann M, Wenger OS. Photoacid Behavior versus Proton-Coupled Electron Transfer in Phenol–Ru(bpy)32+ Dyads. J Phys Chem A 2013; 117:5726-33. [DOI: 10.1021/jp402567m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Kuss-Petermann
- Institut für Anorganische
Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Departement für
Chemie, Universität Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Cembran A, Provorse MR, Wang C, Wu W, Gao J. The Third Dimension of a More O'Ferrall-Jencks Diagram for Hydrogen Atom Transfer in the Isoelectronic Hydrogen Exchange Reactions of (PhX)(2)H(•) with X = O, NH, and CH(2). J Chem Theory Comput 2012; 8:4347-4358. [PMID: 23226989 PMCID: PMC3516191 DOI: 10.1021/ct3004595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A critical element in theoretical characterization of the mechanism of proton-coupled electron transfer (PCET) reactions, including hydrogen atom transfer (HAT), is the formulation of the electron and proton localized diabatic states, based on which a More O'Ferrall-Jencks diagram can be represented to determine the step-wise and concerted nature of the reaction. Although the More O'Ferrall-Jencks diabatic states have often been used empirically to develop theoretical models for PCET reactions, the potential energy surfaces for these states have never been determined directly based on first principles calculations using electronic structure theory. The difficulty is due to a lack of practical method to constrain electron and proton localized diabatic states in wave function or density functional theory calculations. Employing a multistate density functional theory (MSDFT), in which the electron and proton localized diabatic configurations are constructed through block-localization of Kohn-Sham orbitals, we show that distinction between concerted proton-electron transfer (CPET) and HAT, which are not distinguishable experimentally from phenomenological kinetic data, can be made by examining the third dimension of a More O'Ferrall-Jencks diagram that includes both the ground and excited state potential surfaces. In addition, we formulate a pair of effective two-state valence bond models to represent the CPET and HAT mechanisms. We found that the lower energy of the CPET and HAT effective diabatic states at the intersection point can be used as an energetic criterion to distinguish the two mechanisms. In the isoelectronic series of hydrogen exchange reaction in (PhX)(2)H(•), where X = O, NH, and CH(2), there is a continuous transition from a CPET mechanism for the phenoxy radical-phenol pair to a HAT process for benzyl radical and toluene, while the reaction between PhNH(2) and PhNH(•) has a mechanism intermediate of CPET and HAT. The electronically nonadiabatic nature of the CPET mechanism in the phenol system can be attributed to the overlap interactions between the ground and excited state surfaces, resulting in roughly orthogonal minimum energy paths on the adiabatic ground and excited state potential energy surfaces. On the other hand, the minimum energy path on the adiabatic ground state for the HAT mechanism coincides with that on the excited state, producing a large electronic coupling that separates the two surfaces by more than 120 kcal/mol.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Makenzie R. Provorse
- Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Changwei Wang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiali Gao
- Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
44
|
Schrauben JN, Cattaneo M, Day TC, Tenderholt AL, Mayer JM. Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical Marcus theory. J Am Chem Soc 2012; 134:16635-45. [PMID: 22974135 PMCID: PMC3476473 DOI: 10.1021/ja305668h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh(2)NH(2), -Py, and -CH(2)Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH(2), HOAr-Py, and HOAr-CH(2)Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6-(t)Bu(3)C(6)H(2)OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical k(CPET) values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH(2) and HOAr-CH(2)Py that span over 10(7) in k(CPET) and nearly 0.9 eV in driving force (ΔG(o)'). Plots of log(k(CPET)) vs ΔG(o)', including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λ(CPET) ≅ 1.15-1.2 eV and H(ab) ≅ 20-30 cm(-1). These experiments represent the most direct measurements of H(ab) for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 10(12) s(-1). Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ~45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-(t)Bu(3)C(6)H(2)OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed.
Collapse
Affiliation(s)
| | | | - Thomas C. Day
- Department of Chemistry, University of Washington, Seattle WA 98195
| | | | - James M. Mayer
- Department of Chemistry, University of Washington, Seattle WA 98195
| |
Collapse
|
45
|
Bronner C, Wenger OS. Proton-Coupled Electron Transfer between 4-Cyanophenol and Photoexcited Rhenium(I) Complexes with Different Protonatable Sites. Inorg Chem 2012; 51:8275-83. [DOI: 10.1021/ic300834c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catherine Bronner
- Georg-August-Universität, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077
Göttingen, Germany
| | - Oliver S. Wenger
- Georg-August-Universität, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077
Göttingen, Germany
| |
Collapse
|
46
|
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proc Natl Acad Sci U S A 2012; 109:15578-83. [PMID: 22566659 DOI: 10.1073/pnas.1118348109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680(•+) and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF(10)), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF(10) in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF(10)(•+)-TCNP(•-). A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH(+)-PhO(•)-PF(10)-TCNP(•-), in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.
Collapse
|
47
|
Halls JE, Wright KJ, Pickersgill JE, Smith JP, Altalhi AA, Bourne RW, Alaei P, Ramakrishnappa T, Kelly SM, Wadhawan JD. Voltammetry within structured liquid nanosystems: Towards the design of a flexible, three-dimensional framework for artificial photosystems. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Tan SLJ, Webster RD. Electrochemically Induced Chemically Reversible Proton-Coupled Electron Transfer Reactions of Riboflavin (Vitamin B2). J Am Chem Soc 2012; 134:5954-64. [DOI: 10.1021/ja300191u] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Serena L. J. Tan
- Division of Chemistry
and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Richard D. Webster
- Division of Chemistry
and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
49
|
Milczarek G, Inganas O. Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks. Science 2012; 335:1468-71. [DOI: 10.1126/science.1215159] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
Zhang W, Burgess IJ. Kinetic isotope effects in proton coupled electron transfer. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|