1
|
Ledum M, Sen S, Li X, Carrer M, Feng Y, Cascella M, Bore SL. HylleraasMD: A Domain Decomposition-Based Hybrid Particle-Field Software for Multiscale Simulations of Soft Matter. J Chem Theory Comput 2023; 19:2939-2952. [PMID: 37130290 DOI: 10.1021/acs.jctc.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present HylleraasMD (HyMD), a comprehensive implementation of the recently proposed Hamiltonian formulation of hybrid particle-field molecular dynamics. The methodology is based on a tunable, grid-independent length-scale of coarse graining, obtained by filtering particle densities in reciprocal space. This enables systematic convergence of energies and forces by grid refinement, also eliminating nonphysical force aliasing. Separating the time integration of fast modes associated with internal molecular motion from slow modes associated with their density fields, we enable the first time-reversible, energy-conserving hybrid particle-field simulations. HyMD comprises the optional use of explicit electrostatics, which, in this formalism, corresponds to the long-range potential in particle-mesh Ewald. We demonstrate the ability of HyMD to perform simulations in the microcanonical and canonical ensembles with a series of test cases, comprising lipid bilayers and vesicles, surfactant micelles, and polypeptide chains, comparing our results to established literature. An on-the-fly increase of the characteristic coarse-grain length significantly speeds up dynamics, accelerating self-diffusion and leading to expedited aggregation. Exploiting this acceleration, we find that the time scales involved in the self-assembly of polymeric structures can lie in the tens to hundreds of picoseconds instead of the multimicrosecond regime observed with comparable coarse-grained models.
Collapse
Affiliation(s)
- Morten Ledum
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Samiran Sen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Xinmeng Li
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Manuel Carrer
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Yu Feng
- Berkeley Center for Cosmological Physics and Department of Physics, University of California, Berkeley, California 94720, United States
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Sigida EN, Grinev VS, Zdorovenko EL, Dmitrenok AS, Burygin GL, Kondurina NK, Konnova SA, Fedonenko YP. O-Antigens of Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T), and Azospirillum palustre B2(T): Structure Elucidation and Analysis of Biosynthesis Genes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
5
|
|
6
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Vitiello G, Oliva R, Petraccone L, Vecchio PD, Heenan RK, Molinaro A, Silipo A, D'Errico G, Paduano L. Covalently bonded hopanoid-Lipid A from Bradyrhizobium: The role of unusual molecular structure and calcium ions in regulating the lipid bilayers organization. J Colloid Interface Sci 2021; 594:891-901. [DOI: 10.1016/j.jcis.2021.03.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 01/31/2023]
|
8
|
Luchini A, Vitiello G. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics (Basel) 2020; 6:biomimetics6010003. [PMID: 33396534 PMCID: PMC7838988 DOI: 10.3390/biomimetics6010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence:
| |
Collapse
|
9
|
Aggregation of Lipid A Variants: A Hybrid Particle-Field Model. Biochim Biophys Acta Gen Subj 2020; 1865:129570. [PMID: 32105775 DOI: 10.1016/j.bbagen.2020.129570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Lipid A is one of the three components of bacterial lipopolysaccharides constituting the outer membrane of Gram-negative bacteria, and is recognized to have an important biological role in the inflammatory response of mammalians. Its biological activity is modulated by the number of acyl-chains that are present in the lipid and by the dielectric medium, i.e., the type of counter-ions, through electrostatic interactions. In this paper, we report on a coarse-grained model of chemical variants of Lipid A based on the hybrid particle-field/molecular dynamics approach (hPF-MD). In particular, we investigate the stability of Lipid A bilayers for two different hexa- and tetra-acylated structures. Comparing particle density profiles along bilayer cross-sections, we find good agreement between the hPF-MD model and reference all-atom simulation for both chemical variants of Lipid A. hPF-MD models of constituted bilayers composed by hexa-acylated Lipid A in water are stable within the simulation time. We further validate our model by verifying that the phase behavior of Lipid A/counterion/water mixtures is correctly reproduced. In particular, hPF-MD simulations predict the correct self-assembly of different lamellar and micellar phases from an initially random distribution of Lipid A molecules with counterions in water. Finally, it is possible to observe the spontaneous formation and stability of Lipid A vesicles by fusion of micellar aggregates.
Collapse
|
10
|
Sali W, Patoli D, Pais de Barros JP, Labbé J, Deckert V, Duhéron V, Le Guern N, Blache D, Chaumont D, Lesniewska E, Gasquet B, Paul C, Moreau M, Denat F, Masson D, Lagrost L, Gautier T. Polysaccharide Chain Length of Lipopolysaccharides From Salmonella Minnesota Is a Determinant of Aggregate Stability, Plasma Residence Time and Proinflammatory Propensity in vivo. Front Microbiol 2019; 10:1774. [PMID: 31428071 PMCID: PMC6688513 DOI: 10.3389/fmicb.2019.01774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharides (LPS) originate from the outer membrane of Gram-negative bacteria and trigger an inflammatory response via the innate immune system. LPS consist of a lipid A moiety directly responsible for the stimulation of the proinflammatory cascade and a polysaccharide chain of variable length. LPS form aggregates of variable size and structure in aqueous media, and the aggregation/disaggregation propensity of LPS is known as a key determinant of their biological activity. The aim of the present study was to determine to which extent the length of the polysaccharide chain can affect the nature of LPS structures, their pharmacokinetics, and eventually their proinflammatory properties in vivo. LPS variants of Salmonella Minnesota with identical lipid A but with different polysaccharide moieties were used. The physical properties of LPS aggregates were analyzed by zetametry, dynamic light scattering, and microscopy. The stability of LPS aggregates was tested in the presence of plasma, whole blood, and cultured cell lines. LPS pharmacokinetics was performed in wild-type mice. The accumulation in plasma of rough LPS (R-LPS) with a short polysaccharidic chain was lower, and its hepatic uptake was faster as compared to smooth LPS (S-LPS) with a long polysaccharidic chain. The inflammatory response was weaker with R-LPS than with S-LPS. As compared to S-LPS, R-LPS formed larger aggregates, with a higher hydrophobicity index, a more negative zeta potential, and a higher critical aggregation concentration. The lower stability of R-LPS aggregates could be illustrated in vitro by a higher extent of association of LPS to plasma lipoproteins, faster binding to blood cells, and increased uptake by macrophages and hepatocytes, compared to S-LPS. Our data indicate that a long polysaccharide chain is associated with the formation of more stable aggregates with extended residence time in plasma and higher inflammatory potential. These results show that polysaccharide chain length, and overall aggregability of LPS might be helpful to predict the proinflammatory effect that can be expected in experimental settings using LPS preparations. In addition, better knowledge and control of LPS aggregation and disaggregation might lead to new strategies to enhance LPS detoxification in septic patients.
Collapse
Affiliation(s)
- Wahib Sali
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Danish Patoli
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Jérôme Labbé
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Valérie Deckert
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Vincent Duhéron
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Naig Le Guern
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Denis Blache
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Denis Chaumont
- UMR6303 Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS/University of Bourgogne Franche-Comté, Dijon, France
| | - Eric Lesniewska
- UMR6303 Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS/University of Bourgogne Franche-Comté, Dijon, France
| | - Benoit Gasquet
- Cell Imaging platform, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris, France.,LIIC, EA7269, University of Bourgogne Franche-Comté, Dijon, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de Bourgogne, UMR6302, CNRS/University of Bourgogne Franche-Comté, Dijon, France
| | - Franck Denat
- Institut de Chimie Moléculaire de Bourgogne, UMR6302, CNRS/University of Bourgogne Franche-Comté, Dijon, France
| | - David Masson
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France.,University Hospital of Dijon, Dijon, France
| | - Laurent Lagrost
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France.,University Hospital of Dijon, Dijon, France
| | - Thomas Gautier
- LipSTIC LabEx, UMR1231, Lipids Nutrition Cancer, Inserm/University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Bianchini F, De Santis A, Portioli E, Russo Krauss I, Battistini L, Curti C, Peppicelli S, Calorini L, D'Errico G, Zanardi F, Sartori A. Integrin-targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:135-145. [PMID: 30849548 DOI: 10.1016/j.nano.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
We report here the preparation, physico-chemical characterization, and biological evaluation of a new liposome formulation as a tool for tumor angiogenesis inhibition. Liposomes are loaded with sunitinib, a tyrosine kinase inhibitor, and decorated with cyclo-aminoprolineRGD units (cAmpRGD), efficient and selective ligands for integrin αVβ3. The RGD units play multiple roles since they target the nanovehicles at the integrin αVβ3-overexpressing cells (e.g. activated endothelial cells), favor their active cell internalization, providing drug accumulation in the cytoplasm, and likely take part in the angiogenesis inhibition by interfering in the αVβ3-VEGFR2 cross-talk. Both in vitro and in vivo studies show a better efficacy of this integrated antiangiogenic tool with respect to the free sunitinib and untargeted sunitinib-loaded liposomes. This system could allow a lower administration of the drug and, by increasing the vector specificity, reduce side-effects in a prolonged antiangiogenic therapy.
Collapse
Affiliation(s)
- Francesca Bianchini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Augusta De Santis
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Elisabetta Portioli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Irene Russo Krauss
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Silvia Peppicelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Lido Calorini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
12
|
Vitiello G, Zanfardino A, Tammaro O, Di Napoli M, Caso MF, Pezzella A, Varcamonti M, Silvestri B, D'Errico G, Costantini A, Luciani G. Bioinspired hybrid eumelanin–TiO2 antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Adv 2018; 8:28275-28283. [PMID: 35542468 PMCID: PMC9084248 DOI: 10.1039/c8ra04315a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Intrinsic biocide efficacy of eumelanins can be markedly enhanced through a templated formation in the presence of a TiO2-sol, leading to hybrid TiO2–melanin nanostructures. However, mechanisms and processes behind biocide activity still remain poorly understood. This paper discloses the fundamental mechanism of action of these systems providing mechanistic information on their peculiar interaction with Escherichia coli strains. To this purpose biocide characterization is combined with Electron Paramagnetic Resonance (EPR) spectroscopy to investigate radical species produced by the hybrids as well as their interactions with Gram(−) external bacterial membranes. Experimental results indicate that TiO2 mediated eumelanin polymerization leads to a peculiar mechanism of action of hybrid nanostructures, whose strong interactions with bacterial membranes enhance the action of reactive oxygen species (ROS) produced by eumelanin degradation itself, also concurring with the final biocide action. These findings provide strategic information for the development of eumelanin-based systems with enhanced activity against drug-resistant strains. Hybrid TiO2/eumelanin nanostructures showed a peculiar biocide mechanism against Gram(−) bacteria, based on the ROS action, produced by eumelanin degradation under visible light irradiation, and the interactions with external bacterial membranes.![]()
Collapse
|
13
|
The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Sci Rep 2017; 7:44731. [PMID: 28361894 PMCID: PMC5374485 DOI: 10.1038/srep44731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Abstract
Concerns about acquisition of antibiotic resistance have led to increasing demand for new antimicrobial therapies. OligoG CF-5/20 is an alginate oligosaccharide previously shown to have antimicrobial and antibiotic potentiating activity. We investigated the structural modification of the bacterial cell wall by OligoG CF-5/20 and its effect on membrane permeability. Binding of OligoG CF-5/20 to the bacterial cell surface was demonstrated in Gram-negative bacteria. Permeability assays revealed that OligoG CF-5/20 had virtually no membrane-perturbing effects. Lipopolysaccharide (LPS) surface charge and aggregation were unaltered in the presence of OligoG CF-5/20. Small angle neutron scattering and circular dichroism spectroscopy showed no substantial change to the structure of LPS in the presence of OligoG CF-5/20, however, isothermal titration calorimetry demonstrated a weak calcium-mediated interaction. Metabolomic analysis confirmed no change in cellular metabolic response to a range of osmolytes when treated with OligoG CF-5/20. This data shows that, although weak interactions occur between LPS and OligoG CF-5/20 in the presence of calcium, the antimicrobial effects of OligoG CF-5/20 are not related to the induction of structural alterations in the LPS or cell permeability. These results suggest a novel mechanism of action that may avoid the common route in acquisition of resistance via LPS structural modification.
Collapse
|
14
|
Mangiapia G, Gvaramia M, Kuhrts L, Teixeira J, Koutsioubas A, Soltwedel O, Frielinghaus H. Effect of benzocaine and propranolol on phospholipid-based bilayers. Phys Chem Chem Phys 2017; 19:32057-32071. [DOI: 10.1039/c7cp06077g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug/bilayer interactions are fundamental in determining the action mechanism of active ingredients. Neutron techniques represent unique tools for having a clear comprehension of such interactions.
Collapse
Affiliation(s)
- G. Mangiapia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - M. Gvaramia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
- Ivane Javakhishvili Tbilisi State University
| | - L. Kuhrts
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - J. Teixeira
- Laboratoire Léon Brillouin (CEA-CNRS)
- CEA-Saclay
- F-91191 Gif-sur-Yvette CEDEX
- France
| | - A. Koutsioubas
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - O. Soltwedel
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- D-85747 Garching
- Germany
| | - H. Frielinghaus
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| |
Collapse
|
15
|
Acampora F, Marzaioli AM, Capuozzo A, Appavou MS, Campanella A, D'Errico G, Irace C, Montesarchio D, Musumeci D, Szekely NK, Santamaria R, De Castro C, Paduano L. Lipooligosaccharides as Amphiphiles to Build Liposomes for Effective Drug Delivery: The Case of Anticancer Ruthenium Complex-Based Aggregates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Federica Acampora
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
- CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase; via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Alberto Maria Marzaioli
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
| | - Antonella Capuozzo
- Dipartimento di Farmacia; Università degli Studi di Napoli “Federico II”; Via D. Montesano 49 80131 Napoli Italy
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science JCNS; Forschungszentrum Jülich GmbH; Outstation at MLZ; Lichtenbergstraße 1 85747 Garching Germany
| | - Antonella Campanella
- Jülich Centre for Neutron Science JCNS; Forschungszentrum Jülich GmbH; Outstation at MLZ; Lichtenbergstraße 1 85747 Garching Germany
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
- CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase; via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Carlo Irace
- Dipartimento di Farmacia; Università degli Studi di Napoli “Federico II”; Via D. Montesano 49 80131 Napoli Italy
| | - Daniela Montesarchio
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
| | - Domenica Musumeci
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
| | - Noemi Kinga Szekely
- Jülich Centre for Neutron Science JCNS; Forschungszentrum Jülich GmbH; Outstation at MLZ; Lichtenbergstraße 1 85747 Garching Germany
| | - Rita Santamaria
- Dipartimento di Farmacia; Università degli Studi di Napoli “Federico II”; Via D. Montesano 49 80131 Napoli Italy
| | - Cristina De Castro
- Dipartimento di Agraria; Università degli Studi di Napoli “Federico II”; Via Università 100 80055 Portici (NA) Italy
| | - Luigi Paduano
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Complesso Universitario di Monte S. Angelo; via Cintia 80126 Napoli Italy
- CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase; via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
16
|
Burygin GL, Sigida EN, Fedonenko YP, Khlebtsov BN, Shchyogolev SY. The use and development of the dynamic light-scattering method to investigate supramolecular structures in aqueous solutions of bacterial lipopolysaccharides. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Bonucci A, Caldaroni E, Balducci E, Pogni R. A Spectroscopic Study of the Aggregation State of the Human Antimicrobial Peptide LL-37 in Bacterial versus Host Cell Model Membranes. Biochemistry 2015; 54:6760-8. [PMID: 26502164 DOI: 10.1021/acs.biochem.5b00813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The LL-37 antimicrobial peptide is the only cathelicidin peptide found in humans that has antimicrobial and immunomodulatory properties. Because it exerts also chemotactic and angiogenetic activity, LL-37 is involved in promoting wound healing, reducing inflammation, and strengthening the host immune response. The key to the effectiveness of antimicrobial peptides (AMPs) lies in the different compositions of bacterial versus host cell membranes. In this context, antimicrobial peptide LL-37 and two variants were studied in the presence of model membranes with different lipid compositions and charges. The investigation was performed using an experimental strategy that combines the site-directed spin labeling-electron paramagnetic resonance technique with circular dichroism and fluorescence emission spectroscopies. LL-37 interacts with negatively charged membranes forming a stable aggregate, which can likely produce toroidal pores until the amount of bound peptide exceeds a critical concentration. At the same time, we have clearly detected an aggregate with a higher oligomeric degree for interaction of LL-37 with neutral membranes. These data confirm the absence of cell selectivity of the peptide and a more complex role in stimulating host cells.
Collapse
Affiliation(s)
- Alessio Bonucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| | - Elena Caldaroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| | - Enrico Balducci
- School of Biosciences and Veterinary Medicine, University of Camerino , 62032 Camerino, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| |
Collapse
|
18
|
Vitiello G, Falanga A, Petruk AA, Merlino A, Fragneto G, Paduano L, Galdiero S, D'Errico G. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism. SOFT MATTER 2015; 11:3003-3016. [PMID: 25734956 DOI: 10.1039/c4sm02769h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vitiello G, Luchini A, D'Errico G, Santamaria R, Capuozzo A, Irace C, Montesarchio D, Paduano L. Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex. J Mater Chem B 2015; 3:3011-3023. [DOI: 10.1039/c4tb01807a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cationic nanovectors loaded with Ru-based nucleolipids exert a high growth-inhibitory activity against human cancer cells (MCF-7 (A), WiDr (B), and HeLa (C)).
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical
- Materials and Production Engineering
- University of Naples “Federico II”
- 80125 Naples
- Italy
| | - Alessandra Luchini
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| | - Gerardino D'Errico
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| | - Rita Santamaria
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Antonella Capuozzo
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Carlo Irace
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Luigi Paduano
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| |
Collapse
|
20
|
Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S. Chemistry of lipid A: at the heart of innate immunity. Chemistry 2014; 21:500-19. [PMID: 25353096 DOI: 10.1002/chem.201403923] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.
Collapse
Affiliation(s)
- Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II via Cinthia 4, 80126 Napoli (Italy).
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Battistini L, Burreddu P, Sartori A, Arosio D, Manzoni L, Paduano L, D’Errico G, Sala R, Reia L, Bonomini S, Rassu G, Zanardi F. Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Mol Pharm 2014; 11:2280-93. [DOI: 10.1021/mp400718j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Battistini
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Paola Burreddu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Andrea Sartori
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Daniela Arosio
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Leonardo Manzoni
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Luigi Paduano
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Gerardino D’Errico
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Roberto Sala
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Laura Reia
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Sabrina Bonomini
- Dipartimento
di Medicina Clinica e Sperimentale, Università degli Studi di Parma, Parma 43126, Italy
| | - Gloria Rassu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Franca Zanardi
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| |
Collapse
|
22
|
Naumovska E, Ludwanowski S, Hersch N, Braun T, Merkel R, Hoffmann B, Csiszár A. Plasma membrane functionalization using highly fusogenic immune activator liposomes. Acta Biomater 2014; 10:1403-11. [PMID: 24342041 DOI: 10.1016/j.actbio.2013.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
Abstract
Cell surface functionalization and target molecule incorporation into living cell membranes without functional damage represent major biotechnological challenges. One possible way to achieve these goals is to induce cell membrane fusion with an artificial membrane containing molecules equipped with reactive groups or ligands. In this work we developed a carrier system to incorporate lipopolysaccharide (LPS), an immune cell activating molecule from Gram-negative bacteria, into mammalian membranes. LPS is not present in untreated mammalian cells which hence are not detectable by the immune system. Here, we demonstrate the successful incorporation of LPS into fusogenic liposomes (FLs) and subsequent incorporation into mammalian plasma membranes using these FLs. Additionally, the presence of LPS in cell membranes was probed by the addition of non-activated macrophages. A high concentration of LPS in the plasma membrane of immortalized fibroblasts activated the immune cells, which in turn started to eliminate LPS-exhibiting cells. Our method for cellular membrane functionalization is a promising tool for biomedical applications and could provide the basis for specific cell targeting approaches.
Collapse
|
23
|
Phase behavior of the ternary aqueous mixtures of two polydisperse ethoxylated nonionic surfactants. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Domingues MM, Bianconi ML, Barbosa LR, Santiago PS, Tabak M, Castanho MA, Itri R, Santos NC. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2419-27. [DOI: 10.1016/j.bbamem.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
25
|
Mangiapia G, Vitiello G, Irace C, Santamaria R, Colonna A, Angelico R, Radulescu A, D’Errico G, Montesarchio D, Paduano L. Anticancer Cationic Ruthenium Nanovectors: From Rational Molecular Design to Cellular Uptake and Bioactivity. Biomacromolecules 2013; 14:2549-60. [DOI: 10.1021/bm400104b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gaetano Mangiapia
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Vitiello
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Carlo Irace
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Rita Santamaria
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Alfredo Colonna
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ruggero Angelico
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
- DISTAAM, Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse
1, 85748 Garching bei München, Germany
| | - Gerardino D’Errico
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Daniela Montesarchio
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Luigi Paduano
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
26
|
Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger KE, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond JL, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A. Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013; 42:4709-27. [PMID: 23254759 PMCID: PMC4399576 DOI: 10.1039/c2cs35408j] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano, Dipartimento di Chimica Organica e Industriale and Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy
| | | | - Alessandro Casnati
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Franck Fieschi
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Jukka Finne
- Department of Biosciences, University of Helsinki, P. O. Box 56, FI-00014 Helsinki, Finland
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Martina Lahmann
- School of Chemistry, Bangor University, Deiniol Road Bangor, Gwynedd LL57 2UW, UK
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel, Germany
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Cristina Nativi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Francesco Peri
- Organic and Medicinal Chemistry, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Barbara Richichi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, Av. Américo Vespucio, 49, Seville 41092, Spain
| | - Francesco Sansone
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane Vincent
- University of Namur (FUNDP), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Grenoble-Université and ICMG, F-38041 Grenoble, France
| |
Collapse
|
27
|
Mangiapia G, D’Errico G, Simeone L, Irace C, Radulescu A, Di Pascale A, Colonna A, Montesarchio D, Paduano L. Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials 2012; 33:3770-82. [DOI: 10.1016/j.biomaterials.2012.01.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
|
28
|
Simeone L, Mangiapia G, Vitiello G, Irace C, Colonna A, Ortona O, Montesarchio D, Paduano L. Cholesterol-Based Nucleolipid-Ruthenium Complex Stabilized by Lipid Aggregates for Antineoplastic Therapy. Bioconjug Chem 2012; 23:758-70. [DOI: 10.1021/bc200565v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Gaetano Mangiapia
- CSGI − Consorzio interuniversitario per lo sviluppo
dei Sistemi
a Grande Interfase
| | - Giuseppe Vitiello
- CSGI − Consorzio interuniversitario per lo sviluppo
dei Sistemi
a Grande Interfase
| | - Carlo Irace
- Dipartimento di Farmacologia
Sperimentale, Università ‘‘Federico II’’ di Napoli, via D. Montesano 49, 80131
Naples, Italy
| | - Alfredo Colonna
- Dipartimento di Farmacologia
Sperimentale, Università ‘‘Federico II’’ di Napoli, via D. Montesano 49, 80131
Naples, Italy
| | - Ornella Ortona
- CSGI − Consorzio interuniversitario per lo sviluppo
dei Sistemi
a Grande Interfase
| | | | - Luigi Paduano
- CSGI − Consorzio interuniversitario per lo sviluppo
dei Sistemi
a Grande Interfase
| |
Collapse
|
29
|
Simeone L, Mangiapia G, Irace C, Di Pascale A, Colonna A, Ortona O, De Napoli L, Montesarchio D, Paduano L. Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery. MOLECULAR BIOSYSTEMS 2011; 7:3075-86. [PMID: 21897988 DOI: 10.1039/c1mb05143a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel thymidine- or uridine-based nucleolipids, containing one hydrophilic oligo(ethylene glycol) chain and one or two oleic acid residues (called ToThy, HoThy and DoHu), have been synthesized with the aim to develop bio-compatible nanocarriers for drug delivery and/or produce pro-drugs. Microstructural characterization of their aggregates has been determined in pure water and in pseudo-physiological conditions through DLS and SANS experiments. In all cases stable vesicles, with mean hydrodynamic radii ranging between 120 nm and 250 nm have been revealed. Biological validation of the nucleolipidic nanocarriers was ensured by evaluation of their toxicological profiles, performed by administration of the nanoaggregates to a panel of different cell lines. ToThy exhibited a weak cytotoxicity and, at high concentration, some ability to interfere with cell viability and/or proliferation. In contrast, DoHu and HoThy exhibited no toxicological relevance, behaving similarly to POPC-based liposomes, widely used for systemic drug delivery. Taken together, these results show nucleolipid-based nanocarriers as finely tunable, multi-functional self-assembling materials of interest for the in vivo transport of biomolecules or drugs.
Collapse
Affiliation(s)
- Luca Simeone
- Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia, 80126 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nanostructuring of CyPLOS (Cyclic Phosphate-Linked OligoSaccharides), novel saccharide-based synthetic ion transporters. J Colloid Interface Sci 2011; 354:718-24. [DOI: 10.1016/j.jcis.2010.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/22/2022]
|