1
|
Tycko R. Micron-scale magnetic resonance imaging based on low temperatures and dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:136-149. [PMID: 38065667 PMCID: PMC10710538 DOI: 10.1016/j.pnmrs.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2024]
Abstract
Extension of magnetic resonance imaging (MRI) techniques to the single micron scale has been the goal of research in multiple laboratories over several decades. It has proven difficult to achieve isotropic spatial resolution better than 3.0 μm in inductively-detected MRI near 300 K, even with well-behaved test samples, microcoils, and optimized MRI pulse sequences. This article examines the factors that limit spatial resolution in MRI, especially the inherently low signal-to-noise ratio of nuclear magnetic resonance (NMR), and explains how these limiting factors can be overcome in principle, by acquiring MRI data at low temperatures and using dynamic nuclear polarization (DNP) to enhance signal amplitudes. Recent efforts directed at micron-scale MRI enabled by low-temperature DNP, culminating in images with 1.7 μm isotropic resolution obtained at 5 K, are reviewed. The article concludes with a discussion of areas in which further developments are likely to lead to further improvements in resolution, eventually to 1.0 μm or better.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
2
|
Quan Y, Ouyang Y, Mardini M, Palani RS, Banks D, Kempf J, Wenckebach WT, Griffin RG. Resonant Mixing Dynamic Nuclear Polarization. J Phys Chem Lett 2023; 14:7007-7013. [PMID: 37523253 DOI: 10.1021/acs.jpclett.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Palani
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Banks
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - James Kempf
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - W Tom Wenckebach
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Yau WM, Blake Wilson C, Jeon J, Tycko R. Nitroxide-based triradical dopants for efficient low-temperature dynamic nuclear polarization in aqueous solutions over a broad pH range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107284. [PMID: 35986970 PMCID: PMC9463097 DOI: 10.1016/j.jmr.2022.107284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Dynamic nuclear polarization (DNP) can provide substantial sensitivity enhancements in solid state nuclear magnetic resonance (ssNMR) measurements on frozen solutions, thereby enabling experiments that would otherwise be impractical. Previous work has shown that nitroxide-based triradical compounds are particularly effective as dopants in DNP-enhanced measurements at moderate magic-angle spinning frequencies and moderate magnetic field strengths, generally leading to a more rapid build-up of nuclear spin polarizations under microwave irradiation than the more common biradical dopants at the same electron spin concentrations. Here we report the synthesis and DNP performance at 25 K and 9.41 T for two new triradical compounds, sulfoacetyl-DOTOPA and PEG12-DOTOPA. Under our experimental conditions, these compounds exhibit ssNMR signal enhancements and DNP build-up times that are nearly identical to those of previously described triradical dopants. Moreover, these compounds have high solubility in aqueous buffers and water/glycerol mixtures at both acidic and basic pH values, making them useful in a wide variety of experiments on biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
4
|
Enhanced spatial resolution in magnetic resonance imaging by dynamic nuclear polarization at 5 K. Proc Natl Acad Sci U S A 2022; 119:e2201644119. [PMID: 35605126 DOI: 10.1073/pnas.2201644119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough MRI is a powerful method for visualizing features within organisms and materials, the relatively low signal-to-noise ratio (SNR) of the NMR signals that are used to construct an image makes MRI with isotropic spatial resolution below 3.0 μm impractical at room temperature. Here we show that SNR enhancements available from a combination of low temperatures and dynamic nuclear polarization allow MRI with 1.7-μm isotropic resolution. These results may enable informative MRI studies of eukaryotic cells, cell clusters, and small tissue samples.
Collapse
|
5
|
Chen HY, Tycko R. Slice selection in low-temperature, DNP-enhanced magnetic resonance imaging by Lee-Goldburg spin-locking and phase modulation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106715. [PMID: 32179432 PMCID: PMC7145747 DOI: 10.1016/j.jmr.2020.106715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 06/01/2023]
Abstract
Large enhancements in nuclear magnetic resonance (NMR) signals provided by dynamic nuclear polarization (DNP) at low temperatures have the potential to enable inductively-detected 1H magnetic resonance imaging (MRI) with isotropic spatial resolution on the order of one micron, especially when low temperatures and DNP are combined with microcoils, three-dimensional (3D) phase encoding of image information, pulsed spin locking during NMR signal detection, and homonuclear dipolar decoupling by Lee-Goldburg (LG) irradiation or similar methods. However, the relatively slow build-up of nuclear magnetization under DNP leads to very long acquisition times for high-resolution 3D images unless the sample volume or field of view (FOV) is restricted. We have therefore developed a method for slice selection in low-temperature, DNP-enhanced MRI that limits the FOV to about 50 μm in one or more dimensions. This method uses small-amplitude phase modulation of LG irradiation in the presence of a strong magnetic field gradient to invert spin-locked 1H magnetization in the selected slice. Experimental results are reported, including effects of radio-frequency field inhomogeneity, variations in the amplitude of phase modulation, and shaped phase modulation.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
6
|
Yau WM, Jeon J, Tycko R. Succinyl-DOTOPA: An effective triradical dopant for low-temperature dynamic nuclear polarization with high solubility in aqueous solvent mixtures at neutral pH. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106672. [PMID: 31887554 PMCID: PMC6964257 DOI: 10.1016/j.jmr.2019.106672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
We report the synthesis of the nitroxide-based triradical compound succinyl-DOTOPA and the characterization of its performance as a dopant for dynamic nuclear polarization (DNP) experiments in frozen solutions at low temperatures. Compared with previously described DOTOPA derivatives, succinyl-DOTOPA has substantially greater solubility in glycerol/water mixtures with pH > 4 and therefore has wider applicability. Solid state nuclear magnetic resonance (ssNMR) measurements at 9.39 T and 25 K, with magic-angle spinning at 7.00 kHz, show that build-up times of DNP-enhanced, cross-polarized 13C ssNMR signals are shorter and that signal amplitudes are larger for glycerol/water solutions of L-proline containing succinyl-DOTOPA than for solutions containing the biradical AMUPol, with electron spin concentrations of 15 mM or 30 mM, resulting in greater net sensitivity gains from DNP. In similar measurements at 90 K, AMUPol yields greater net sensitivity, apparently due to its longer electron spin-lattice and spin-spin relaxation times. One- and two-dimensional 13C ssNMR measurements at 25 K on the complex of the 27-residue peptide M13 with the calcium-sensing protein calmodulin, in glycerol/water with 10 mM succinyl-DOTOPA, demonstrate the utility of this compound in DNP-enhanced ssNMR studies of biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
7
|
Likhachev A, Danik A, Kovshov Y, Kishko S, Ponomarenko S, Martseniak O, Khutoryan E, Ogawa I, Idehara T, Kuleshov A. Compact radiation module for THz spectroscopy using 300 GHz continuous-wave clinotron. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:034703. [PMID: 30927777 DOI: 10.1063/1.5064796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
The results of the development of compact radiation module based on a 300 GHz continuous-wave (CW) clinotron are presented. The clinotron oscillator is proposed as a part of the module designated for high-field dynamic nuclear polarization (DNP) systems for applications in nuclear magnetic resonance (NMR) spectroscopy. The simulation results of clinotron radiation spectra considering the influence of accelerating voltage pulsations are compared with the requirements for THz radiation linewidth for efficient NMR signal enhancement. Based on the simulations, the 300 GHz CW clinotron oscillator was developed and tested together with the high-voltage (HV) power supply, providing the output voltage stability better than 20 ppm. The frequency stability of 33 ppm was observed during the clinotron operation within several hours. The spectral linewidth is better than 8 MHz at 300 GHz that satisfies the requirements for DNP-NMR spectroscopy.
Collapse
Affiliation(s)
- Alexander Likhachev
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | - Alexander Danik
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | - Yurii Kovshov
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | - Sergey Kishko
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | - Sergey Ponomarenko
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | | | - Eduard Khutoryan
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| | - Isamu Ogawa
- Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507, Japan
| | - Toshitaka Idehara
- Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507, Japan
| | - Alexei Kuleshov
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
| |
Collapse
|
8
|
Chen HY, Tycko R. Temperature-Dependent Nuclear Spin Relaxation Due to Paramagnetic Dopants Below 30 K: Relevance to DNP-Enhanced Magnetic Resonance Imaging. J Phys Chem B 2018; 122:11731-11742. [PMID: 30277390 PMCID: PMC6465147 DOI: 10.1021/acs.jpcb.8b07958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic nuclear polarization (DNP) can increase nuclear magnetic resonance (NMR) signal strengths by factors of 100 or more at low temperatures. In magnetic resonance imaging (MRI), signal enhancements from DNP potentially lead to enhancements in image resolution. However, the paramagnetic dopants required for DNP also reduce nuclear spin relaxation times, producing signal losses that may cancel the signal enhancements from DNP. Here we investigate the dependence of 1H NMR relaxation times, including T1ρ and T2, under conditions of Lee-Goldburg 1H-1H decoupling and pulsed spin locking, on temperature and dopant concentration in frozen solutions that contain the trinitroxide compound DOTOPA. We find that relaxation times become longer at temperatures below 10 K, where DOTOPA electron spins become strongly polarized at equilibrium in a 9.39 T magnetic field. We show that the dependences of relaxation times on temperature and DOTOPA concentration can be reproduced qualitatively (although not quantitatively) by detailed simulations of magnetic field fluctuations due to flip-flop transitions in a system of dipole-coupled electron spin magnetic moments. These results have implications for ongoing attempts to reach submicron resolution in inductively detected MRI at very low temperatures.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
9
|
Leavesley A, Jain S, Kamniker I, Zhang H, Rajca S, Rajca A, Han S. Maximizing NMR signal per unit time by facilitating the e-e-n cross effect DNP rate. Phys Chem Chem Phys 2018; 20:27646-27657. [PMID: 30375593 PMCID: PMC6370975 DOI: 10.1039/c8cp04909b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic nuclear polarization (DNP) efficiency is critically dependent on the properties of the radical, solvent, and solute constituting the sample system. In this study, we focused on the three spin e-e-n cross effect (CE)'s influence on the nuclear longitudinal relaxation time constant T1n, the build-up time constants of nuclear magnetic resonance (NMR) signal, TDNP and DNP-enhancement of NMR signal. The dipolar interaction strength between the electron spins driving the e-e-n process was systematically modulated using mono-, di-, tri-, and dendritic-nitroxide radicals, while maintaining a constant global electron spin concentration of 10 mM. Experimental results showed that an increase in electron spin clustering led to an increased electron spin depolarization, as mapped by electron double resonance (ELDOR), and a dramatically shortened T1n and TDNP time constants under static and magic angle spinning (MAS) conditions. A theoretical analysis reveals that strong e-e interactions, caused by electron spin clustering, increase the CE rate. The three spin e-e-n CE is a hitherto little recognized mechanism for shortening T1n and TDNP in solid-state NMR experiments at cryogenic temperatures, and offers a design principle to enhance the effective CE DNP enhancement per unit time. Fast CE rates will benefit DNP at liquid helium temperatures, or at higher magnetic fields and pulsed DNP, where slow e-e-n polarization transfer rate is a key bottleneck to achieving maximal DNP performance.
Collapse
Affiliation(s)
- Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Ilia Kamniker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| |
Collapse
|
10
|
Chen HY, Tycko R. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:47-55. [PMID: 29288890 PMCID: PMC5803441 DOI: 10.1016/j.jmr.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 05/16/2023]
Abstract
We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
11
|
Akbey Ü, Oschkinat H. Structural biology applications of solid state MAS DNP NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:213-224. [PMID: 27095695 DOI: 10.1016/j.jmr.2016.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.
Collapse
Affiliation(s)
- Ümit Akbey
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Hartmut Oschkinat
- Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
12
|
Thurber K, Tycko R. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:99-106. [PMID: 26920835 PMCID: PMC4769783 DOI: 10.1016/j.jmr.2016.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 05/05/2023]
Abstract
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.
Collapse
Affiliation(s)
- Kent Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
13
|
Guy ML, Zhu L, Ramanathan C. Design and characterization of a W-band system for modulated DNP experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:11-8. [PMID: 26524649 PMCID: PMC4971581 DOI: 10.1016/j.jmr.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 05/05/2023]
Abstract
Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments.
Collapse
Affiliation(s)
- Mallory L Guy
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
| | - Lihuang Zhu
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
14
|
Moore E, Tycko R. Micron-scale magnetic resonance imaging of both liquids and solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:1-9. [PMID: 26397215 PMCID: PMC4628880 DOI: 10.1016/j.jmr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/16/2023]
Abstract
We describe and demonstrate a novel apparatus for magnetic resonance imaging (MRI), suitable for imaging of both liquid and solid samples with micron-scale isotropic resolution. The apparatus includes a solenoidal radio-frequency microcoil with 170 μm inner diameter and a set of planar gradient coils, all wound by hand and supported on a series of stacked sapphire plates. The design ensures efficient heat dissipation during gradient pulses and also facilitates disassembly, sample changes, and reassembly. To demonstrate liquid state (1)H MRI, we present an image of polystyrene beads within CuSO4-doped water, contained within a capillary tube with 100 μm inner diameter, with 5.0 μm isotropic resolution. To demonstrate solid state (1)H MRI, we present an image of NH4Cl particles within the capillary tube, with 8.0 μm isotropic resolution. High-resolution solid state MRI is enabled by frequency-switched Lee-Goldburg decoupling, with an effective rotating frame field amplitude of 289 kHz. At room temperature, pulsed gradients of 4 T/m (i.e., 170 Hz/μm for (1)H MRI) are achievable in all three directions with currents of 10 A or less. The apparatus is contained within a variable-temperature liquid helium cryostat, which will allow future efforts to obtain MRI images at low temperatures with signal enhancement by dynamic nuclear polarization.
Collapse
Affiliation(s)
- Eric Moore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
15
|
Yau WM, Thurber KR, Tycko R. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 244:98-106. [PMID: 24887201 PMCID: PMC4106245 DOI: 10.1016/j.jmr.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 05/05/2023]
Abstract
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
16
|
ConcistrÈ M, Johannessen OG, Carignani E, Geppi M, Levitt MH. Magic-angle spinning NMR of cold samples. Acc Chem Res 2013; 46:1914-22. [PMID: 23488538 DOI: 10.1021/ar300323c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.
Collapse
Affiliation(s)
- Maria ConcistrÈ
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Ole G. Johannessen
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Elisa Carignani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126, Pisa, Italy
| | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126, Pisa, Italy
| | - Malcolm H. Levitt
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
17
|
Potapov A, Yau WM, Tycko R. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 231:5-14. [PMID: 23562665 PMCID: PMC3660528 DOI: 10.1016/j.jmr.2013.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 05/21/2023]
Abstract
We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D (13)C-(13)C exchange spectroscopy to probe the peptide backbone torsion angles (φ, ψ) in a series of selectively (13)C-labeled 40-residue β-amyloid (Aβ(1-40)) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ(1-40) fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl (13)C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous (13)C lineshapes are incorporated in the simulations. The experimental 2D (13)C-(13)C exchange spectra place constraints on the φ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine φ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D (13)C-(13)C exchange spectra can be obtained from a 3.5 mg sample of Aβ(1-40) fibrils in 4 h or less, despite the broad (13)C chemical shift anisotropy line shapes that are observed in static samples.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | | | |
Collapse
|
18
|
Cheng CY, Han S. Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems. Annu Rev Phys Chem 2013; 64:507-32. [DOI: 10.1146/annurev-physchem-040412-110028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|
19
|
Thurber KR, Potapov A, Yau WM, Tycko R. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 226:100-6. [PMID: 23238592 PMCID: PMC3529848 DOI: 10.1016/j.jmr.2012.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 05/05/2023]
Abstract
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids.
Collapse
Affiliation(s)
- Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | | | | | | |
Collapse
|
20
|
Potapov A, Thurber KR, Yau WM, Tycko R. Dynamic nuclear polarization-enhanced ¹H-¹³C double resonance NMR in static samples below 20 K. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 221:32-40. [PMID: 22743540 PMCID: PMC3727229 DOI: 10.1016/j.jmr.2012.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 05/21/2023]
Abstract
We demonstrate the feasibility of one-dimensional and two-dimensional ¹H-¹³C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both ¹H-¹³C cross-polarization and ¹H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for ¹H-¹³C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T₂ relaxation of ¹³C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on ¹³C-labeled biomolecules was demonstrated with a two-dimensional ¹³C-¹³C exchange spectrum of selectively ¹³C-labeled β-amyloid fibrils.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892-0520, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
22
|
|