1
|
Balakrishnan N, Jambrina PG, Croft JFE, Guo H, Aoiz FJ. Quantum stereodynamics of cold molecular collisions. Chem Commun (Camb) 2024; 60:1239-1256. [PMID: 38197484 DOI: 10.1039/d3cc04762h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Advances in quantum state preparations combined with molecular cooling and trapping technologies have enabled unprecedented control of molecular collision dynamics. This progress, achieved over the last two decades, has dramatically improved our understanding of molecular phenomena in the extreme quantum regime characterized by translational temperatures well below a kelvin. In this regime, collision outcomes are dominated by isolated partial waves, quantum threshold and quantum statistics effects, tiny energy splitting at the spin and hyperfine levels, and long-range forces. Collision outcomes are influenced not only by the quantum state preparation of the initial molecular states but also by the polarization of their rotational angular momentum, i.e., stereodynamics of molecular collisions. The Stark-induced adiabatic Raman passage technique developed in the last several years has become a versatile tool to study the stereodynamics of light molecular collisions in which alignment of the molecular bond axis relative to initial collision velocity can be fully controlled. Landmark experiments reported by Zare and coworkers have motivated new theoretical developments, including formalisms to describe four-vector correlations in molecular collisions that are revealed by the experiments. In this Feature article, we provide an overview of recent theoretical developments for the description of stereodynamics of cold molecular collisions and their implications to cold controlled chemistry.
Collapse
Affiliation(s)
- Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - James F E Croft
- The Dodd Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Otago, Dunedin, New Zealand
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
2
|
Brouard M, Chadwick H, Gordon SDS, Hornung B, Nichols B, Aoiz FJ, Stolte S. Stereodynamics in NO(X) + Ar inelastic collisions. J Chem Phys 2017; 144:224301. [PMID: 27306001 DOI: 10.1063/1.4952649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of orientation of the NO(X) bond axis prior to rotationally inelastic collisions with Ar has been investigated experimentally and theoretically. A modification to conventional velocity-map imaging ion optics is described, which allows the orientation of hexapole state-selected NO(X) using a static electric field, followed by velocity map imaging of the resonantly ionized scattered products. Bond orientation resolved differential cross sections are measured experimentally for a series of spin-orbit conserving transitions and compared with quantum mechanical calculations. The agreement between experimental results and those from quantum mechanical calculations is generally good. Parity pairs, which have previously been observed in collisions of unpolarized NO with various rare gases, are not observed due to the coherent superposition of the two j = 1/2, Ω = 1/2 Λ-doublet levels in the orienting field. The normalized difference differential cross sections are found to depend predominantly on the final rotational state, and are not very sensitive to the final Λ-doublet level. The differential steric effect has also been investigated theoretically, by means of quantum mechanical and classical calculations. Classically, the differential steric effect can be understood by considering the steric requirement for different types of trajectories that contribute to different regions of the differential cross section. However, classical effects cannot account quantitatively for the differential steric asymmetry observed in NO(X) + Ar collisions, which reflects quantum interference from scattering at either end of the molecule. This quantum interference effect is dominated by the repulsive region of the potential.
Collapse
Affiliation(s)
- M Brouard
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - H Chadwick
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - S D S Gordon
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - B Hornung
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - B Nichols
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - S Stolte
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Brouard M, Gordon SDS, Hackett Boyle A, Heid CG, Nichols B, Walpole V, Aoiz FJ, Stolte S. Integral steric asymmetry in the inelastic scattering of NO(X 2Π). J Chem Phys 2017; 146:014302. [PMID: 28063434 DOI: 10.1063/1.4972565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The integral steric asymmetry for the inelastic scattering of NO(X) by a variety of collision partners was recorded using a crossed molecular beam apparatus. The initial state of the NO(X, v = 0, j = 1/2, Ω=1/2, ϵ=-1,f) molecule was selected using a hexapole electric field, before the NO bond axis was oriented in a static electric field, allowing probing of the scattering of the collision partner at either the N- or O-end of the molecule. Scattered NO molecules were state selectively probed using (1 + 1') resonantly enhanced multiphoton ionisation, coupled with velocity-map ion imaging. Experimental integral steric asymmetries are presented for NO(X) + Ar, for both spin-orbit manifolds, and Kr, for the spin-orbit conserving manifold. The integral steric asymmetry for spin-orbit conserving and changing transitions of the NO(X) + O2 system is also presented. Close-coupled quantum mechanical scattering calculations employing well-tested ab initio potential energy surfaces were able to reproduce the steric asymmetry observed for the NO-rare gas systems. Quantum mechanical scattering and quasi-classical trajectory calculations were further used to help interpret the integral steric asymmetry for NO + O2. Whilst the main features of the integral steric asymmetry of NO with the rare gases are also observed for the O2 collision partner, some subtle differences provide insight into the form of the underlying potentials for the more complex system.
Collapse
Affiliation(s)
- M Brouard
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - S D S Gordon
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - A Hackett Boyle
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - C G Heid
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - B Nichols
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - V Walpole
- The Department of Chemistry, The Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - S Stolte
- The Jilin Institute of Atomic and Molecular Physics, Qianjin Avenue, Changchung 130012, China
| |
Collapse
|
4
|
Eyles CJ, Floß J, Averbukh IS, Leibscher M. Atom-diatom scattering dynamics of spinning molecules. J Chem Phys 2015; 142:024311. [DOI: 10.1063/1.4905251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. J. Eyles
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. Floß
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - I. Sh. Averbukh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M. Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
5
|
Aldegunde J, Herráez-Aguilar D, Jambrina PG, Aoiz FJ, Jankunas J, Zare RN. H + D2 Reaction Dynamics in the Limit of Low Product Recoil Energy. J Phys Chem Lett 2012; 3:2959-2963. [PMID: 26292233 DOI: 10.1021/jz301192f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.
Collapse
Affiliation(s)
- J Aldegunde
- †Departamento de Química Física, Facultad de Química, Universidad de Salamanca, 37008 Salamanca, Spain
| | - D Herráez-Aguilar
- ‡Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - P G Jambrina
- ‡Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - F J Aoiz
- ‡Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - J Jankunas
- §Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - R N Zare
- §Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
6
|
Shan X, Connor JNL. Semiclassical glory analyses in the time domain for the H + D2(vi= 0,ji= 0) → HD(vf= 3,jf= 0) + D reaction. J Chem Phys 2012; 136:044315. [DOI: 10.1063/1.3677229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
Aldegunde J, Jambrina PG, de Miranda MP, Sáez Rábanos V, Aoiz FJ. Stereodynamics of the F + HD(v = 0, j = 1) reaction: direct vs. resonant mechanisms. Phys Chem Chem Phys 2011; 13:8345-58. [PMID: 21279213 DOI: 10.1039/c0cp02457k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jesús Aldegunde
- Grupo de Dinámica Molecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | | | | | | | | |
Collapse
|
8
|
Simbotin I, Ghosal S, Côté R. A case study in ultracold reactive scattering: D + H2. Phys Chem Chem Phys 2011; 13:19148-55. [PMID: 21976145 DOI: 10.1039/c1cp21982k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ion Simbotin
- University of Connecticut, Department of Physics, 2152 Hillside Road, U-3046, Storrs, CT 06269, USA.
| | | | | |
Collapse
|