1
|
Zhu YC, Xue FH, Kang LX, Liu JW, Wang Y, Li DY, Liu PN. Synthesis of Dendronized Polymers on the Au(111) Surface. J Phys Chem Lett 2022; 13:10589-10596. [PMID: 36346870 DOI: 10.1021/acs.jpclett.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dendronized polymers (DPs) consist of a linear polymeric backbone with dendritic side chains. Fine-tuning of the functional groups in the side chains enriches the structural versatility of the DPs and imparts a variety of novel physical properties. Herein, the first on-surface synthesis of DPs is achieved via the postfunctionalization of polymers on Au(111), in which the surface-confinement-induced planar conformation and chiral configurations were unambiguously characterized. While the dendronized monomer was synthesized in situ on Au(111), the subsequent polymerization afforded only short, cross-linked DP chains owing to multiple side reactions. The postfunctionalization approach selectively produced brominated polyphenylene backbone moieties by the deiodination polymerization of 4-bromo-4″-iodo-5'-(4-iodophenyl)-1,1':3',1″-terphenyl on Au(111), which smoothly underwent divergent cross-coupling reactions with two different isocyanides to form two types of DPs as individual long chains.
Collapse
Affiliation(s)
- Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fu-Hua Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Wei Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Piquero-Zulaica I, Garcia-Lekue A, Colazzo L, Krug CK, Mohammed MSG, Abd El-Fattah ZM, Gottfried JM, de Oteyza DG, Ortega JE, Lobo-Checa J. Electronic Structure Tunability by Periodic meta-Ligand Spacing in One-Dimensional Organic Semiconductors. ACS NANO 2018; 12:10537-10544. [PMID: 30295463 DOI: 10.1021/acsnano.8b06536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.
Collapse
Affiliation(s)
- Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , Paseo Manuel de Lardizabal 5 , E-20018 San Sebastián , Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Luciano Colazzo
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain
| | - Claudio K Krug
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Str. 4 , 35032 Marburg , Germany
| | - Mohammed S G Mohammed
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , Paseo Manuel de Lardizabal 5 , E-20018 San Sebastián , Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain
| | - Zakaria M Abd El-Fattah
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
- Physics Department, Faculty of Science , Al-Azhar University , Nasr City , E-11884 Cairo , Egypt
| | - J Michael Gottfried
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Str. 4 , 35032 Marburg , Germany
| | - Dimas G de Oteyza
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , Paseo Manuel de Lardizabal 5 , E-20018 San Sebastián , Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , 48011 Bilbao , Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , Paseo Manuel de Lardizabal 5 , E-20018 San Sebastián , Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain
- Dpto. Física Aplicada I , Universidad del País Vasco , E-20018 San Sebastián , Spain
| | - Jorge Lobo-Checa
- Instituto de Ciencia de Materiales de Aragón (ICMA) , CSIC-Universidad de Zaragoza , E-50009 Zaragoza , Spain
- Departamento de Física de la Materia Condensada , Universidad de Zaragoza , E-50009 Zaragoza , Spain
| |
Collapse
|
3
|
Constructive quantum interference in a bis-copper six-porphyrin nanoring. Nat Commun 2017; 8:14842. [PMID: 28327654 PMCID: PMC5364408 DOI: 10.1038/ncomms14842] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
The exchange interaction, J, between two spin centres is a convenient measure of through bond electronic communication. Here, we investigate quantum interference phenomena in a bis-copper six-porphyrin nanoring by electron paramagnetic resonance spectroscopy via measurement of the exchange coupling between the copper centres. Using an analytical expression accounting for both dipolar and exchange coupling to simulate the time traces obtained in a double electron electron resonance experiment, we demonstrate that J can be quantified to high precision even in the presence of significant through-space coupling. We show that the exchange coupling between two spin centres is increased by a factor of 4.5 in the ring structure with two parallel coupling paths as compared to an otherwise identical system with just one coupling path, which is a clear signature of constructive quantum interference. Quantum interference in charge transport is attracting interest with applications in nanoelectronics and quantum computing. Here, the authors present a method for quantifying electronic transmission through molecules, and demonstrate constructive quantum interference in a molecule with two identical, parallel coupling paths.
Collapse
|
4
|
Gayathri HN, Kumar B, Suresh KA, Bisoyi HK, Kumar S. Charge transport in a liquid crystalline triphenylene polymer monolayer at air-solid interface. Phys Chem Chem Phys 2016; 18:12101-7. [PMID: 27075432 DOI: 10.1039/c5cp07531a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have prepared a monolayer of a novel liquid crystalline polymer derived from 2,6-dihydroxy-3,7,10,11-tetraalkoxy-triphenylene (PHAT) at an air-water interface and transferred it onto freshly cleaved mica as well as gold coated mica substrates by the Langmuir-Blodgett (L-B) technique. The atomic force microscope (AFM) images of these L-B films show a uniform coverage with a thickness of 1.5 nm. Electrical conductivity measurements were carried out on the PHAT monolayer deposited on the gold coated mica substrate using a current sensing AFM (CSAFM). The gold substrate-PHAT monolayer-cantilever tip of CSAFM forms a metal-insulator-metal (M-I-M) junction. The CSAFM yields a non-linear current-voltage (I-V) curve for the M-I-M junction. The analysis of the I-V characteristics of the M-I-M junction indicated that the charge transport in the liquid crystalline polymer monolayer is by the direct tunneling mechanism. The barrier height for the PHAT monolayer was estimated to be 1.22 ± 0.02 eV.
Collapse
Affiliation(s)
- H N Gayathri
- Centre for Nano and Soft Matter Sciences, P. B. No: 1329, Jalahalli, Bangalore - 560 013, India.
| | - Bharat Kumar
- School of Physical Sciences, Central University of Karnataka, Kadaganchi - 585367, Karnataka, India
| | - K A Suresh
- Centre for Nano and Soft Matter Sciences, P. B. No: 1329, Jalahalli, Bangalore - 560 013, India.
| | - H K Bisoyi
- Raman Research Institute, Sadashivanagar, Bangalore - 560080, India
| | - Sandeep Kumar
- Raman Research Institute, Sadashivanagar, Bangalore - 560080, India
| |
Collapse
|
5
|
Anishchenko D, Levin O, Malev V. Quasi-equilibrium voltammetric curves of polaron-conducting polymer films. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Heck A, Kranz JJ, Kubař T, Elstner M. Multi-Scale Approach to Non-Adiabatic Charge Transport in High-Mobility Organic Semiconductors. J Chem Theory Comput 2015; 11:5068-82. [DOI: 10.1021/acs.jctc.5b00719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Heck
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Heidelberg
Karlsruhe Research Partnership (HEiKA), Heidelberg University, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Julian J. Kranz
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Heidelberg
Karlsruhe Research Partnership (HEiKA), Heidelberg University, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Reformulation of charge transfer and material balance equations of polaron-containing polymer films. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Botiz I, Freyberg P, Leordean C, Gabudean AM, Astilean S, Yang ACM, Stingelin N. Enhancing the photoluminescence emission of conjugated MEH-PPV by light processing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4974-4979. [PMID: 24611888 DOI: 10.1021/am4060244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show here that treatment of thin films of conjugated polymers by illumination with light leads to an increase of the intensity of their photoluminescence by up to 42%. The corresponding enhancement of absorbance was much less pronounced. We explain this significant enhancement of photoluminescence by a planarization of the conjugated polymer chains induced by photoexcitations even below the glass transition temperature, possibly due to an increased conjugation length. Interestingly, the photoluminescence remains at the enhanced level for more than 71 h after treatment of the films by illumination with light, likely due to the fact that below the glass transition temperature no restoring force could return the conjugated chains into their initial conformational state.
Collapse
Affiliation(s)
- Ioan Botiz
- Freiburg Institute for Advanced Studies , Albertstraße 19, Freiburg 79104, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Bruce MI, Burgun A, Fox MA, Jevric M, Low PJ, Nicholson BK, Parker CR, Skelton BW, White AH, Zaitseva NN. Some Ruthenium Derivatives of Penta-1,4-diyn-3-one. Organometallics 2013. [DOI: 10.1021/om400208q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael I. Bruce
- School of Chemistry & Physics, University of Adelaide, Adelaide, South Australia 5005
| | - Alexandre Burgun
- School of Chemistry & Physics, University of Adelaide, Adelaide, South Australia 5005
| | - Mark A. Fox
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
| | - Martyn Jevric
- School of Chemistry & Physics, University of Adelaide, Adelaide, South Australia 5005
| | - Paul J. Low
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
| | | | - Christian R. Parker
- School of Chemistry & Physics, University of Adelaide, Adelaide, South Australia 5005
| | - Brian W. Skelton
- Centre for Microscopy, Characterisation
and Analysis, University of Western Australia, Crawley, Western Australia 6009
| | - Allan H. White
- School of Chemistry and Biochemistry
M313, University of Western Australia,
Crawley, Western Australia 6009
| | - Natasha N. Zaitseva
- School of Chemistry & Physics, University of Adelaide, Adelaide, South Australia 5005
| |
Collapse
|
10
|
Hasegawa M, Watanabe M, Misaki Y. Synthesis, Structures and Properties of [n]Dendralenes Substituted with Electron-Donating Groups. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.1268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yuen-Zhou J, Aspuru-Guzik A. Remarks on time-dependent [current]-density functional theory for open quantum systems. Phys Chem Chem Phys 2013; 15:12626-36. [DOI: 10.1039/c3cp51127h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Siriwong K, Voityuk AA. Electron transfer in DNA. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|