1
|
Yang Z, Galimova GR, He C, Doddipatla S, Mebel AM, Kaiser RI. Gas-Phase Formation of 1,3,5,7-Cyclooctatetraene (C 8H 8) through Ring Expansion via the Aromatic 1,3,5-Cyclooctatrien-7-yl Radical (C 8H 9•) Transient. J Am Chem Soc 2022; 144:22470-22478. [PMID: 36454210 DOI: 10.1021/jacs.2c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Gas-phase 1,3,5,7-cyclooctatetraene (C8H8) and triplet aromatic 1,3,5,7-cyclooctatetraene (C8H8) were formed for the first time through bimolecular methylidyne radical (CH)-1,3,5-cycloheptatriene (C7H8) reactions under single-collision conditions on a doublet surface. The reaction involves methylidyne radical addition to the olefinic π electron system of 1,3,5-cycloheptatriene followed by isomerization and ring expansion to an aromatic 1,3,5-cyclooctatrien-7-yl radical (C8H9•). The chemically activated doublet radical intermediate undergoes unimolecular decomposition to 1,3,5,7-cyclooctatetraene. Substituted 1,3,5,7-cyclooctatetraene molecules can be prepared in the gas phase with hydrogen atom(s) in the 1,3,5-cycloheptatriene reactant being replaced by organic side groups. These findings are also of potential interest to organometallic chemists by expanding the synthesis of exotic transition-metal complexes incorporating substituted 1,3,5,7-cyclooctatetraene dianion (C8H82-) ligands and to untangle the unimolecular decomposition of chemically activated and substituted 1,3,5-cyclooctatrien-7-yl radical, eventually gaining a fundamental insight of their bonding chemistry, electronic structures, and stabilities.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida33199, United States
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida33199, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
2
|
Krikunova LI, Nikolayev AA, Porfiriev DP, Mebel AM. Reaction of propionitrile with methylidyne: A theoretical study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Lubov I. Krikunova
- Samara National Research University Samara Russia
- Lebedev Physical Institute Samara Branch Samara Russia
| | - Anatoliy A. Nikolayev
- Samara National Research University Samara Russia
- Lebedev Physical Institute Samara Branch Samara Russia
| | - Denis P. Porfiriev
- Samara National Research University Samara Russia
- Lebedev Physical Institute Samara Branch Samara Russia
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami Florida USA
| |
Collapse
|
3
|
Gobre VV, Gejji SP, Pathak RK. Cyclopropenylidene: Clustering and Interaction with Water Molecules. J Phys Chem A 2022; 126:5721-5728. [PMID: 35998414 DOI: 10.1021/acs.jpca.2c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclopropenylidene (c-C3H2, abbreviated CPD) is a highly reactive, planar, partially aromatic carbene discovered in the interstellar medium, and, also recently, in the outer solar system. It is demonstrated herein on cogent quantum chemical grounds that CPD which possesses an electric dipole moment of 3.4 D is capable of forming stable dimer and trimer clusters through hydrogen-bonding. These attributes of CPD are conducive to the formation of stable hydrogen-bonded conformations with one- and two-water molecules. Having determined its consistency with the second-order Møller-Plesset perturbation theory MP2, we employ the ωB97xD hybrid density functional theory in conjunction with a 6-311++G(2d,2p) basis set for a credible description of noncovalent interactions involved in clustering. Molecular electrostatic potential (MESP) and characteristic vibrational frequency shifts upon clustering are presented.
Collapse
Affiliation(s)
- Vivekanand V Gobre
- School of Chemical Sciences, Goa University, Taleigao, Plateau Goa, 403206, India
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rajeev K Pathak
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
4
|
Field-Theodore TE, Taylor PR. Interstellar hide and go seek: C 3H 4O. There and back (again). Phys Chem Chem Phys 2022; 24:19184-19198. [PMID: 35730752 DOI: 10.1039/d2cp00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular species C3H4O represents a striking example of an astrochemical conundrum. With more than 60 structural isomers theoretically possible, to date only acrolein (CH2CHCHO) has been identified in the Sgr B2(N) region of the interstellar medium (ISM). The topography of the singlet potential energy surface is complicated, with three low-lying minima predicted to be almost isoenergetic: cis and trans-acrolein, and methylketene (CH3CHCO). Our CCSD(T)/cc-pVTZ calculations confirm that methylketene is energetically lower than cis-acrolein, lying only 1.9 kJ mol-1 above the trans-isomer, which is the global minimum. In this respect, methylketene is a promising candidate for interstellar observation. Unfortunately, however, despite several searches its astronomical detection has been unsuccessful. To this end, the key question is whether in fact methylketene exists as a discrete chemical entity in the ISM at all? In this paper, we present a detailed examination of the C3H4O potential energy surface, with specific focus on formation pathways. CCSD(T)/cc-pVTZ calculations enable a more elaborate interpretation of reaction mechanisms than was published hitherto. Our results show that gauche-propargyl alcohol and syn and anti-allenol emerge as interesting new targets for observational astronomers in TMC-1: given the recent discovery of the propargyl radical in this region, barrierless product channels involving OH˙ lend support to their candidacy as possible interstellar species. Finally, this work provides accurate spectral data of these three potential molecules, to be used for searches in interstellar space.
Collapse
Affiliation(s)
| | - Peter R Taylor
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
He C, Yang Z, Doddipatla S, Thomas AM, Kaiser RI, Galimova GR, Mebel AM, Fujioka K, Sun R. Directed gas phase preparation of ethynylallene (H 2CCCHCCH; X 1A′) via the crossed molecular beam reaction of the methylidyne radical (CH; X 2Π) with vinylacetylene (H 2CCHCCH; X 1A′). Phys Chem Chem Phys 2022; 24:26499-26510. [DOI: 10.1039/d2cp04081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The elementary reaction of the methylidyne radical with vinylacetylene leading to the predominant formation of ethynylallene and atomic hydrogen via indirect scattering dynamics.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Aaron M. Thomas
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Rui Sun
- Department of Chemistry, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
He C, Fujioka K, Nikolayev AA, Zhao L, Doddipatla S, Azyazov VN, Mebel AM, Sun R, Kaiser RI. A chemical dynamics study of the reaction of the methylidyne radical (CH, X 2Π) with dimethylacetylene (CH 3CCCH 3, X 1A 1g). Phys Chem Chem Phys 2021; 24:578-593. [PMID: 34908056 DOI: 10.1039/d1cp04443e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The gas-phase reaction of the methylidyne (CH; X2Π) radical with dimethylacetylene (CH3CCCH3; X1A1g) was studied at a collision energy of 20.6 kJ mol-1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C5H7 reaction intermediate(s) ultimately dissociating to C5H6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon-carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon-hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively 'screen' the carbon-carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C2H6) forming propylene (CH3C2H3). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH3CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne - ethane system.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
7
|
Rettig A, Head-Gordon M, Doddipatla S, Yang Z, Kaiser RI. Crossed Beam Experiments and Computational Studies of Pathways to the Preparation of Singlet Ethynylsilylene (HCCSiH; X 1A'): The Silacarbene Counterpart of Triplet Propargylene (HCCCH; X 3B). J Phys Chem Lett 2021; 12:10768-10776. [PMID: 34714997 DOI: 10.1021/acs.jpclett.1c03036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ethynylsilylene (HCCSiH; X1A') has been prepared in the gas phase through the elementary reaction of singlet dicarbon (C2) with silane (SiH4) under single-collision conditions. Electronic structure calculations reveal a barrierless reaction pathway involving 1,1-insertion of dicarbon into one of the silicon-hydrogen bonds followed by hydrogen migration to form the 3-sila-methylacetylene (HCCSiH3) intermediate. The intermediate undergoes unimolecular decomposition through molecular hydrogen loss to ethynylsilylene (HCCSiH; Cs; X1A'). The dicarbon-silane system defines a benchmark to explore the consequence of a single collision between the simplest "only carbon" molecule (dicarbon) with the prototype of a closed-shell silicon hydride (silane) yielding a nonclassical silacarbene, whose molecular geometry and electronic structure are quite distinct from the isovalent triplet propargylene (HCCCH; C2; 3B) carbon-counterpart. These organosilicon transients cannot be prepared through traditional organic, synthetic methods, thus opening up a versatile path to access the previously largely elusive class of silacarbenes.
Collapse
Affiliation(s)
- Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
8
|
Nikolayev AA, Azyazov VN, Kaiser RI, Mebel AM. Theoretical Study of the Reaction of the Methylidyne Radical (CH; X 2Π) with 1-Butyne (CH 3CH 2CCH; X 1A'). J Phys Chem A 2021; 125:9536-9547. [PMID: 34672597 DOI: 10.1021/acs.jpca.1c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ab initio CCSD(T)-F12/cc-pVTZ-f12//ωB97X-D/6-311G(d,p) + ZPE[ωB97X-D/6-311G(d,p)] calculations were carried out to unravel the area of the C5H7 potential energy surface accessed by the reaction of the methylidyne radical with 1-butyne. The results were utilized in Rice-Ramsperger-Kassel-Marcus calculations of the product branching ratios at the zero pressure limit. The preferable reaction mechanism has been shown to involve (nearly) instantaneous decomposition of the initial reaction adducts, whose structures are controlled by the isomeric form of the C4H6 reactant. If CH adds to the triple C≡C bond in the entrance reaction channel, the reaction is predicted to predominantly form the methylenecyclopropene + methyl (CH3) and cyclopropenylidene + ethyl (C2H5) products roughly in a 2:1 ratio. CH insertion into a C-H bond in the methyl group of 1-butyne is anticipated to preferentially form ethylene + propargyl (C3H3) by the C-C bond β-scission in the initial complex, whereas CH insertion into C-H of the CH2 group would predominantly produce vinylacetylene + methyl (CH3) also by the C-C bond β-scission in the adduct. The barrierless and highly exoergic CH + 1-butyne reaction, facile in cold molecular clouds, is not likely to lead to the carbon skeleton molecular growth but generates C4H4 isomers methylenecyclopropene, vinylacetylene, and 1,2,3-butatriene and smaller C2 and C3 hydrocarbons such as methyl, ethyl, and propargyl radicals, ethylene, and cyclopropenylidene.
Collapse
Affiliation(s)
- Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russian Federation.,Samara National Research University, Samara 443086, Russian Federation
| | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russian Federation.,Samara National Research University, Samara 443086, Russian Federation
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
9
|
Caster KL, Selby TM, Osborn DL, Le Picard SD, Goulay F. Product Detection of the CH(X 2Π) Radical Reaction with Cyclopentadiene: A Novel Route to Benzene. J Phys Chem A 2021; 125:6927-6939. [PMID: 34374546 DOI: 10.1021/acs.jpca.1c03517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of the methylidyne radical (CH(X2Π)) with cyclopentadiene (c-C5H6) is studied in the gas phase at 4 Torr and 373 K using a multiplexed photoionization mass spectrometer. Under multiple collision conditions, the dominant product channel observed is the formation of C6H6 + H. Fitting the photoionization spectrum using reference spectra allows for isomeric resolution of C6H6 isomers, where benzene is the largest contributor with a relative branching fraction of 90 (±5)%. Several other C6H6 isomers are found to have smaller contributions, including fulvene with a branching fraction of 8 (±5)%. Master Equation calculations for four different entrance channels on the C6H7 potential energy surface are performed to explore the competition between CH cycloaddition to a C═C bond vs CH insertion into C-H bonds of cyclopentadiene. Previous studies on CH addition to unsaturated hydrocarbons show little evidence for the C-H insertion pathway. The present computed branching fractions support benzene as the sole cyclic product from CH cycloaddition, whereas fulvene is the dominant product from two of the three pathways for CH insertion into the C-H bonds of cyclopentadiene. The combination of experiment with Master Equation calculations implies that insertion must account for ∼10 (±5)% of the overall CH + cyclopentadiene mechanism.
Collapse
Affiliation(s)
- Kacee L Caster
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - Sebastien D Le Picard
- IPR (Institut de Physique de Rennes), UMR 6251, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
10
|
Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI. Low-temperature gas-phase formation of indene in the interstellar medium. SCIENCE ADVANCES 2021; 7:7/1/eabd4044. [PMID: 33523847 PMCID: PMC7775774 DOI: 10.1126/sciadv.abd4044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
- Samara National Research University, Samara 443086, Russia
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, KS 66002, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
11
|
He C, Galimova GR, Luo Y, Zhao L, Eckhardt AK, Sun R, Mebel AM, Kaiser RI. A chemical dynamics study on the gas-phase formation of triplet and singlet C 5H 2 carbenes. Proc Natl Acad Sci U S A 2020; 117:30142-30150. [PMID: 33199606 PMCID: PMC7720239 DOI: 10.1073/pnas.2019257117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the postulation of carbenes by Buchner (1903) and Staudinger (1912) as electron-deficient transient species carrying a divalent carbon atom, carbenes have emerged as key reactive intermediates in organic synthesis and in molecular mass growth processes leading eventually to carbonaceous nanostructures in the interstellar medium and in combustion systems. Contemplating the short lifetimes of these transient molecules and their tendency for dimerization, free carbenes represent one of the foremost obscured classes of organic reactive intermediates. Here, we afford an exceptional glance into the fundamentally unknown gas-phase chemistry of preparing two prototype carbenes with distinct multiplicities-triplet pentadiynylidene (HCCCCCH) and singlet ethynylcyclopropenylidene (c-C5H2) carbene-via the elementary reaction of the simplest organic radical-methylidyne (CH)-with diacetylene (HCCCCH) under single-collision conditions. Our combination of crossed molecular beam data with electronic structure calculations and quasi-classical trajectory simulations reveals fundamental reaction mechanisms and facilitates an intimate understanding of bond-breaking processes and isomerization processes of highly reactive hydrocarbon intermediates. The agreement between experimental chemical dynamics studies under single-collision conditions and the outcome of trajectory simulations discloses that molecular beam studies merged with dynamics simulations have advanced to such a level that polyatomic reactions with relevance to extreme astrochemical and combustion chemistry conditions can be elucidated at the molecular level and expanded to higher-order homolog carbenes such as butadiynylcyclopropenylidene and triplet heptatriynylidene, thus offering a versatile strategy to explore the exotic chemistry of novel higher-order carbenes in the gas phase.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
- Laboratory of Combustion Physics and Chemistry, Samara National Research University, Samara 443086, Russia
| | - Yuheng Luo
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822;
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199;
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822;
| |
Collapse
|
12
|
Doddipatla S, Yang Z, Thomas AM, Chen YL, Sun BJ, Chang AHH, Mebel AM, Kaiser RI. Gas Phase Synthesis of the Elusive Trisilacyclopropyl Radical (Si 3H 5) via Unimolecular Decomposition of Chemically Activated Doublet Trisilapropyl Radicals (Si 3H 7). J Phys Chem Lett 2020; 11:7874-7881. [PMID: 32814428 DOI: 10.1021/acs.jpclett.0c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gas phase reaction of the simplest silicon-bearing radical silylidyne (SiH; X2Π) with disilane (Si2H6; X1A1g) was investigated in a crossed molecular beams machine. Combined with electronic structure calculations, our data reveal the synthesis of the previously elusive trisilacyclopropyl radical (Si3H5)-the isovalent counterpart of the cyclopropyl radical (C3H5)-along with molecular hydrogen via indirect scattering dynamics through long-lived, acyclic trisilapropyl (i-Si3H7) collision complex(es). Possible hydrogen-atom roaming on the doublet surface proceeds to molecular hydrogen loss accompanied by ring closure. The chemical dynamics are quite distinct from the isovalent methylidyne (CH)-ethane (C2H6) reaction, which leads to propylene (C3H6) radical plus atomic hydrogen but not to cyclopropyl (C3H5) radical plus molecular hydrogen. The identification of the trisilacyclopropyl radical (Si3H5) opens up preparative pathways for an unusual gas phase chemistry of previously inaccessible ring-strained (inorgano)silicon molecules as a result of single-collision events.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Yue-Lin Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
13
|
Doddipatla S, He C, Kaiser RI, Luo Y, Sun R, Galimova GR, Mebel AM, Millar TJ. A chemical dynamics study on the gas phase formation of thioformaldehyde (H 2CS) and its thiohydroxycarbene isomer (HCSH). Proc Natl Acad Sci U S A 2020; 117:22712-22719. [PMID: 32859759 PMCID: PMC7502777 DOI: 10.1073/pnas.2004881117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex organosulfur molecules are ubiquitous in interstellar molecular clouds, but their fundamental formation mechanisms have remained largely elusive. These processes are of critical importance in initiating a series of elementary chemical reactions, leading eventually to organosulfur molecules-among them potential precursors to iron-sulfide grains and to astrobiologically important molecules, such as the amino acid cysteine. Here, we reveal through laboratory experiments, electronic-structure theory, quasi-classical trajectory studies, and astrochemical modeling that the organosulfur chemistry can be initiated in star-forming regions via the elementary gas-phase reaction of methylidyne radicals with hydrogen sulfide, leading to thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH). The facile route to two of the simplest organosulfur molecules via a single-collision event affords persuasive evidence for a likely source of organosulfur molecules in star-forming regions. These fundamental reaction mechanisms are valuable to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of sulfur in our Galaxy.
Collapse
Affiliation(s)
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822;
| | - Yuheng Luo
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822;
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199;
| | - Tom J Millar
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
14
|
He C, Thomas AM, Galimova GR, Mebel AM, Kaiser RI. Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X 2Π) with Propylene (CH 3CHCH 2; X 1A'). J Phys Chem A 2019; 123:10543-10555. [PMID: 31718184 DOI: 10.1021/acs.jpca.9b09815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with propylene (CH3CHCH2; X1A') along with (partially) substituted reactants were conducted at collision energies of 19.3 kJ mol-1. Combining our experimental data with ab initio electronic structure and statistical calculations, the methylidyne radical is revealed to add barrierlessly to the carbon-carbon double bond of propylene reactant resulting in a cyclic doublet C4H7 intermediate with a lifetime longer than its rotation period. These adducts undergo a nonstatistical unimolecular decomposition via atomic hydrogen loss through tight exit transition states forming the cyclic products 1-methylcyclopropene and 3-methylcyclopropene with overall reaction exoergicities of 168 ± 25 kJ mol-1. These C4H6 isomers are predicted to exist even in low-temperature environments such as cold molecular clouds like TMC-1, since the reaction is barrierless and exoergic, all transition states are below the energy of the separated reactants, and both the methylidyne radical (CH; X2Π) and propylene reactant were detected in cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
15
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas‐Phase Synthesis of Triafulvene under Single‐Collision Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Long Zhao
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Chao He
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
- Samara National Research University Samara 443086 Russia
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| |
Collapse
|
16
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas-Phase Synthesis of Triafulvene under Single-Collision Conditions. Angew Chem Int Ed Engl 2019; 58:15488-15495. [PMID: 31368202 DOI: 10.1002/anie.201908039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 11/09/2022]
Abstract
The triafulvene molecule (c-C4 H4 )-the simplest representative of the fulvene family-has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3 CCH) and allene (H2 CCCH2 ) under single-collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π-electron density of either C3 H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave-inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low-temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC-1).
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.,Samara National Research University, Samara, 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
17
|
Caster KL, Donnellan ZN, Selby TM, Goulay F. Kinetic Investigations of the CH (X2Π) Radical Reaction with Cyclopentadiene. J Phys Chem A 2019; 123:5692-5703. [PMID: 31194547 DOI: 10.1021/acs.jpca.9b03813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kacee L. Caster
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Zachery N. Donnellan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Talitha M. Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin—Milwaukee, West Bend, Wisconsin 53095, United States
| | - F. Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
18
|
Thomas AM, Zhao L, He C, Mebel AM, Kaiser RI. A Combined Experimental and Computational Study on the Reaction Dynamics of the 1-Propynyl (CH3CC)–Acetylene (HCCH) System and the Formation of Methyldiacetylene (CH3CCCCH). J Phys Chem A 2018; 122:6663-6672. [DOI: 10.1021/acs.jpca.8b05530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Long Zhao
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Chao He
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
19
|
Thomas AM, Lucas M, Zhao L, Liddiard J, Kaiser RI, Mebel AM. A combined crossed molecular beams and computational study on the formation of distinct resonantly stabilized C 5H 3 radicals via chemically activated C 5H 4 and C 6H 6 intermediates. Phys Chem Chem Phys 2018. [PMID: 29537029 DOI: 10.1039/c8cp00357b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crossed molecular beams technique was utilized to explore the formation of three isomers of resonantly stabilized (C5H3) radicals along with their d2-substituted counterparts via the bimolecular reactions of singlet/triplet dicarbon [C2(X1Σ+g/a3Πu)] with methylacetylene [CH3CCH(X1A1)], d3-methylacetylene [CD3CCH(X1A1)], and 1-butyne [C2H5CCH(X1A')] at collision energies up to 26 kJ mol-1via chemically activated singlet/triplet C5H4/C5D3H and C6H6 intermediates. These studies exploit a newly developed supersonic dicarbon [C2(X1Σ+g/a3Πu)] beam generated via photolysis of tetrachloroethylene [C2Cl4(X1Ag)] by excluding interference from carbon atoms, which represent the dominating (interfering) species in ablation-based dicarbon sources. We evaluated the performance of the dicarbon [C2(X1Σ+g/a3Πu)] beam in reactions with methylacetylene [CH3CCH(X1A1)] and d3-methylacetylene [CD3CCH(X1A1)]; the investigations demonstrate that the reaction dynamics match previous studies in our laboratory utilizing ablation-based dicarbon sources involving the synthesis of 1,4-pentadiynyl-3 [HCCCHCCH(X2B1)] and 2,4-pentadiynyl-1 [H2CCCCCH(X2B1)] radicals via hydrogen (deuterium) atom elimination. Considering the C2(X1Σ+g/a3Πu)-1-butyne [C2H5CCH(X1A')] reaction, the hitherto elusive methyl-loss pathway was detected. This channel forms the previously unknown resonantly stabilized penta-1-yn-3,4-dienyl-1 [H2CCCHCC(X2A)] radical along with the methyl radical [CH3(X2A2'')] and is open exclusively on the triplet surface with an overall reaction energy of -86 ± 10 kJ mol-1. The preferred reaction pathways proceed first by barrierless addition of triplet dicarbon to the π-electronic system of 1-butyne, either to both acetylenic carbon atoms or to the sterically more accessible carbon atom, to form the methyl-bearing triplet C6H6 intermediates [i41b] and [i81b], respectively, with the latter decomposing via a tight exit transition state to penta-1-yn-3,4-dienyl-1 [(H2CCCHCC(X2A)] plus the methyl radical [CH3(X2A2'')]. The successful unraveling of this methyl-loss channel - through collaborative experimental and computational efforts - underscores the viability of the photolytically generated dicarbon beam as an unprecedented tool to access reaction dynamics underlying the formation of resonantly stabilized free radicals (RSFR) that are vital to molecular mass growth processes that ultimately lead to polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Broderick BM, Suas-David N, Dias N, Suits AG. Isomer-specific detection in the UV photodissociation of the propargyl radical by chirped-pulse mm-wave spectroscopy in a pulsed quasi-uniform flow. Phys Chem Chem Phys 2018; 20:5517-5529. [PMID: 29165455 DOI: 10.1039/c7cp06211g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomer-specific detection and product branching fractions in the UV photodissociation of the propargyl radical is achieved through the use of chirped-pulse Fourier-transform mm-wave spectroscopy in a pulsed quasi-uniform flow (CPUF). Propargyl radicals are produced in the 193 nm photodissociation of 1,2-butadiene. Absorption of a second photon leads to H atom elimination giving three possible C3H2 isomers: singlets cyclopropenylidene (c-C3H2) and propadienylidene (l-C3H2), and triplet propargylene (3HCCCH). The singlet products and their appearance kinetics in the flow are directly determined by rotational spectroscopy, but due to the negligible dipole moment of propargylene, it is not directly monitored. However, we exploit the time-dependent kinetics of H-atom catalyzed isomerization to infer the branching to propargylene as well. We obtain the overall branching among H loss channels to be 2.9% (+1.1/-0.5) l-C3H2 + H, 16.8% (+3.2/-1.3) c-C3H2 + H, and 80.2 (+1.8/-4.2) 3HCCCH + H. Our findings are qualitatively consistent with earlier RRKM calculations in that the major channel in the photodissociation of the propargyl radical at 193 nm is to 3HCCCH + H; however, a greater contribution to the energetically most favorable isomer, c-C3H2 + H is observed in this work. We do not detect the predicted HCCC + H2 channel, but place an upper bound on its yield of 1%.
Collapse
Affiliation(s)
- Bernadette M Broderick
- Department of Chemistry, University of Missouri, 601 S. College Ave, Columbia MO 65211, USA.
| | | | | | | |
Collapse
|
21
|
Garcia GA, Gans B, Krüger J, Holzmeier F, Röder A, Lopes A, Fittschen C, Alcaraz C, Loison JC. Valence shell threshold photoelectron spectroscopy of C3Hx (x = 0–3). Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00510a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the photoelectron spectra of C3Hx (x = 0–3) formed in a microwave discharge flow-tube reactor by consecutive H abstractions from C3H4 (C3Hx + F → C3Hx−1 + HF (x = 1–4)), but also from F + CH4 schemes by secondary reactions.
Collapse
Affiliation(s)
| | | | - Julia Krüger
- Synchrotron SOLEIL
- L'Orme des Merisiers
- Gif sur Yvette
- France
| | - Fabian Holzmeier
- Synchrotron SOLEIL
- L'Orme des Merisiers
- Gif sur Yvette
- France
- Laboratoire de Chimie Physique d'Orsay
| | - Anja Röder
- Synchrotron SOLEIL
- L'Orme des Merisiers
- Gif sur Yvette
- France
| | - Allan Lopes
- CNRS – Université Paris-Sud et Paris-Saclay
- Laboratoire de Chimie Physique
- UMR 8000
- Centre Universitaire Paris-Sud
- 91405 Orsay
| | | | - Christian Alcaraz
- CNRS – Université Paris-Sud et Paris-Saclay
- Laboratoire de Chimie Physique
- UMR 8000
- Centre Universitaire Paris-Sud
- 91405 Orsay
| | | |
Collapse
|
22
|
Parker DSN, Kaiser RI. On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem Soc Rev 2017; 46:452-463. [DOI: 10.1039/c6cs00714g] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical evolution of extraterrestrial environments leads to the formation of nitrogen substituted polycyclic aromatic hydrocarbons (NPAHs) via gas phase radical mediated aromatization reactions.
Collapse
Affiliation(s)
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawai’i at Manoa
- Honolulu
- USA
| |
Collapse
|
23
|
Yang T, Dangi BB, Kaiser RI, Bertels LW, Head-Gordon M. A Combined Experimental and Theoretical Study on the Formation of the 2-Methyl-1-silacycloprop-2-enylidene Molecule via the Crossed Beam Reactions of the Silylidyne Radical (SiH; X(2)Π) with Methylacetylene (CH3CCH; X(1)A1) and D4-Methylacetylene (CD3CCD; X(1)A1). J Phys Chem A 2016; 120:4872-83. [PMID: 26837568 DOI: 10.1021/acs.jpca.5b12457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bimolecular gas-phase reactions of the ground-state silylidyne radical (SiH; X(2)Π) with methylacetylene (CH3CCH; X(1)A1) and D4-methylacetylene (CD3CCD; X(1)A1) were explored at collision energies of 30 kJ mol(-1) under single-collision conditions exploiting the crossed molecular beam technique and complemented by electronic structure calculations. These studies reveal that the reactions follow indirect scattering dynamics, have no entrance barriers, and are initiated by the addition of the silylidyne radical to the carbon-carbon triple bond of the methylacetylene molecule either to one carbon atom (C1; [i1]/[i2]) or to both carbon atoms concurrently (C1-C2; [i3]). The collision complexes [i1]/[i2] eventually isomerize via ring-closure to the c-SiC3H5 doublet radical intermediate [i3], which is identified as the decomposing reaction intermediate. The hydrogen atom is emitted almost perpendicularly to the rotational plane of the fragmenting complex resulting in a sideways scattering dynamics with the reaction being overall exoergic by -12 ± 11 kJ mol(-1) (experimental) and -1 ± 3 kJ mol(-1) (computational) to form the cyclic 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4; p1). In line with computational data, experiments of silylidyne with D4-methylacetylene (CD3CCD; X(1)A1) depict that the hydrogen is emitted solely from the silylidyne moiety but not from methylacetylene. The dynamics are compared to those of the related D1-silylidyne (SiD; X(2)Π)-acetylene (HCCH; X(1)Σg(+)) reaction studied previously in our group, and from there, we discovered that the methyl group acts primarily as a spectator in the title reaction. The formation of 2-methyl-1-silacycloprop-2-enylidene under single-collision conditions via a bimolecular gas-phase reaction augments our knowledge of the hitherto poorly understood silylidyne (SiH; X(2)Π) radical reactions with small hydrocarbon molecules leading to the synthesis of organosilicon molecules in cold molecular clouds and in carbon-rich circumstellar envelopes.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Luke W Bertels
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
24
|
Yang T, Dangi BB, Thomas AM, Kaiser RI. Untangling the reaction dynamics of the silylidyne radical (SiH; X2Π) with acetylene (C2H2; X1Σg+). Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Trevitt AJ, Goulay F. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection. Phys Chem Chem Phys 2016; 18:5867-82. [DOI: 10.1039/c5cp06389b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase radical reactions of CN and CH with small hydrocarbons are overviewed with emphasis on isomer-resolved product detection.
Collapse
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Fabien Goulay
- Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
26
|
Sun YL, Huang WJ, Lee SH. Formation of C3H2, C5H2, C7H2, and C9H2 from reactions of CH, C3H, C5H, and C7H radicals with C2H2. Phys Chem Chem Phys 2016; 18:2120-9. [DOI: 10.1039/c5cp06072a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional velocity distribution contour of C2n+1H2 produced from the reaction of C2n−1H (n = 1–4) with C2H2 in crossed molecular beams.
Collapse
Affiliation(s)
- Yi-Lun Sun
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - Wen-Jian Huang
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - Shih-Huang Lee
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| |
Collapse
|
27
|
|
28
|
Abstract
Due to the prominent role of the propargyl radical for hydrocarbon growth within combustion environments, it is important to understand the kinetics of its formation and loss. The ab initio transition state theory-based master equation method is used to obtain theoretical kinetic predictions for the temperature and pressure dependence of the thermal decomposition of propargyl, which may be its primary loss channel under some conditions. The potential energy surface for the decomposition of propargyl is first mapped at a high level of theory with a combination of coupled cluster and multireference perturbation calculations. Variational transition state theory is then used to predict the microcanonical rate coefficients, which are subsequently implemented within the multiple-well multiple-channel master equation. A variety of energy transfer parameters are considered, and the sensitivity of the thermal rate predictions to these parameters is explored. The predictions for the thermal decomposition rate coefficient are found to be in good agreement with the limited experimental data. Modified Arrhenius representations of the rate constants are reported for utility in combustion modeling.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- †Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - James A Miller
- †Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ahren W Jasper
- ‡Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
29
|
Broderick BM, McCaslin L, Moradi CP, Stanton JF, Douberly GE. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene. J Chem Phys 2015; 142:144309. [DOI: 10.1063/1.4917421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - Laura McCaslin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | - John F. Stanton
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| |
Collapse
|
30
|
Osborn DL, Vogelhuber KM, Wren SW, Miller EM, Lu YJ, Case AS, Sheps L, McMahon RJ, Stanton JF, Harding LB, Ruscic B, Lineberger WC. Electronic States of the Quasilinear Molecule Propargylene (HCCCH) from Negative Ion Photoelectron Spectroscopy. J Am Chem Soc 2014; 136:10361-72. [DOI: 10.1021/ja5039984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, United States
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Kristen M. Vogelhuber
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Scott W. Wren
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Elisa M. Miller
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Yu-Ju Lu
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Amanda S. Case
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Leonid Sheps
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Robert J. McMahon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322, United States
| | - John F. Stanton
- Institute
for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lawrence B. Harding
- Division
of Chemical Sciences and Engineering, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Division
of Chemical Sciences and Engineering, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - W. Carl Lineberger
- JILA
and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
31
|
Ribeiro JM, Mebel AM. Reaction Mechanism and Product Branching Ratios of the CH + C3H8 Reaction: A Theoretical Study. J Phys Chem A 2014; 118:9080-6. [DOI: 10.1021/jp502128z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joao Marcelo Ribeiro
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
32
|
Kaiser RI, Maity S, Dangi BB, Su YS, Sun BJ, Chang AHH. A crossed molecular beam and ab initio investigation of the exclusive methyl loss pathway in the gas phase reaction of boron monoxide (BO; X2Σ+) with dimethylacetylene (CH3CCCH3; X1A1g). Phys Chem Chem Phys 2014; 16:989-97. [DOI: 10.1039/c3cp53930j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Lockyear JF, Welz O, Savee JD, Goulay F, Trevitt AJ, Taatjes CA, Osborn DL, Leone SR. Isomer Specific Product Detection in the Reaction of CH with Acrolein. J Phys Chem A 2013; 117:11013-26. [DOI: 10.1021/jp407428v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jessica F. Lockyear
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Oliver Welz
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California, 94551, United States
| | - John D. Savee
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California, 94551, United States
| | - Fabien Goulay
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Adam J. Trevitt
- School
of Chemistry, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Craig A. Taatjes
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California, 94551, United States
| | - David L. Osborn
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California, 94551, United States
| | - Stephen R. Leone
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Departments
of Chemistry and Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Zhang Y, Wang L, Li Y, Zhang J. Theoretical insight into electronic spectra of carbon chain carbenes H2Cn (n = 3-10). J Chem Phys 2013; 138:204303. [PMID: 23742471 DOI: 10.1063/1.4806186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ground-state geometries of carbenes H2Cn (n = 3-10) have been fully optimized with the C2ν-symmetry constraint at the density functional theory and restricted-spin coupled-cluster single-double plus perturbative triple excitation levels of theory, respectively. Comparison of structures corresponding to the X(1)A1 and B(1)B1 electronic states has been made by the complete active space self-consistent field calculations. Parity alternation effect on various properties of the ground-state geometries has been discovered in the present study, which generally gives illustration for the relative stabilities of the titled carbon chains. Further calculations on their electronic spectra have been carried out by means of the complete active space second-order perturbation theory method along with the cc-pVTZ basis set. It is found that the vertical excitation energies of the dipole-allowed B(1)B1 ← X(1)A1 transition in the gas phase are 2.28, 4.75, 1.69, 3.66, 1.30, 2.94, 1.12, and 2.49 eV, respectively, which agree very well with the available experimental result for H2C3 (2.27 eV). In addition, the vertical excitation energies for both transitions B(1)B1 ← X(1)A1 and A(1)A2 ← X(1)A1 are found to obey a nonlinear ΔE-n relationship as a function of chain size by performing curves fitting.
Collapse
Affiliation(s)
- Yanxin Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | | | | | | |
Collapse
|
35
|
Varadwaj PR, Varadwaj A, Peslherbe GH. An electronic structure theory investigation of the physical chemistry of the intermolecular complexes of cyclopropenylidene with hydrogen halides. J Comput Chem 2012; 33:2073-82. [DOI: 10.1002/jcc.23043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/30/2023]
|
36
|
Stanton JF, Garand E, Kim J, Yacovitch TI, Hock C, Case AS, Miller EM, Lu YJ, Vogelhuber KM, Wren SW, Ichino T, Maier JP, McMahon RJ, Osborn DL, Neumark DM, Lineberger WC. Ground and low-lying excited states of propadienylidene (H2C=C=C:) obtained by negative ion photoelectron spectroscopy. J Chem Phys 2012; 136:134312. [DOI: 10.1063/1.3696896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Wilson AV, Parker DSN, Zhang F, Kaiser RI. Crossed beam study of the atom-radical reaction of ground state carbon atoms (C(3P)) with the vinyl radical (C2H3(X2A')). Phys Chem Chem Phys 2012; 14:477-81. [PMID: 22120638 DOI: 10.1039/c1cp22993a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atom-radical reaction of ground state carbon atoms (C((3)P)) with the vinyl radical (C(2)H(3)(X(2)A')) was conducted under single collision conditions at a collision energy of 32.3 ± 2.9 kJ mol(-1). The reaction dynamics were found to involve a complex forming reaction mechanism, which is initiated by the barrier-less addition of atomic carbon to the carbon-carbon-double bond of the vinyl radical forming a cyclic C(3)H(3) radical intermediate. The latter has a lifetime of at least 1.5 times its rotational period and decomposes via a tight exit transition state located about 45 kJ mol(-1) above the separated products through atomic hydrogen loss to the cyclopropenylidene isomer (c-C(3)H(2)) as detected toward cold molecular clouds and in star forming regions.
Collapse
Affiliation(s)
- Antony V Wilson
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
38
|
Zhang F, Maksyutenko P, Kaiser RI. Chemical dynamics of the CH(X2Π) + C2H4(X1A1g), CH(X2Π) + C2D4(X1A1g), and CD(X2Π) + C2H4(X1A1g) reactions studied under single collision conditions. Phys Chem Chem Phys 2012; 14:529-37. [PMID: 22108533 DOI: 10.1039/c1cp22350j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Fangtong Zhang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
39
|
Kaiser RI, Gu X, Zhang F, Maksyutenko P. Crossed beam reactions of methylidyne [CH(X2Π)] with D2-acetylene [C2D2(X1Σg+)] and of D1-methylidyne [CD(X2Π)] with acetylene [C2H2(X1Σg+)]. Phys Chem Chem Phys 2012; 14:575-88. [DOI: 10.1039/c1cp22635e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Parker DDSN, Zhang DF, Kaiser DRI, Kislov DVV, Mebel DAM. Indene Formation under Single-Collision Conditions from the Reaction of Phenyl Radicals with Allene and Methylacetylene-A Crossed Molecular Beam and Ab Initio Study. Chem Asian J 2011; 6:3035-47. [DOI: 10.1002/asia.201100535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 11/09/2022]
|