1
|
Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019; 14:349-364. [PMID: 32104465 PMCID: PMC7032133 DOI: 10.1016/j.ajps.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Aurum nanomaterials (ANM), combining the features of nanotechnology and metal elements, have demonstrated enormous potential and aroused great attention on biomedical applications over the past few decades. Particularly, their advantages, such as controllable particle size, flexible surface modification, higher drug loading, good stability and biocompatibility, especially unique optical properties, promote the development of ANM in biomedical field. In this review, we will discuss the advanced preparation process of ANM and summarize their recent applications as well as their prospects in diagnosis and therapy. Besides, multi-functional ANM-based theranostic nanosystems will be introduced in details, including radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), and so on.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Suarasan S, Craciun AM, Licarete E, Focsan M, Magyari K, Astilean S. Intracellular Dynamic Disentangling of Doxorubicin Release from Luminescent Nanogold Carriers by Fluorescence Lifetime Imaging Microscopy (FLIM) under Two-Photon Excitation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7812-7822. [PMID: 30707545 DOI: 10.1021/acsami.8b21269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is still a lack of available techniques to follow noninvasively the intracellular processes as well to track or disentangle various signals from the therapeutic agents at the site of action in the target cells. We present here the assessment of the intracellular kinetics of doxorubicin (DOX) and gold nanoparticle (AuNP) carriers by mapping simultaneously fluorescence and photoluminescence signals by fluorescence lifetime imaging microscopy under two-photon excitation (TPE-FLIM). The new nano-chemotherapeutic system AuNPs@gelatin-hyd-DOX has been fabricated by DOX loading onto the surface of gelatin-biosynthesized AuNPs (AuNPs@gelatin) through a pH-sensitive hydrazone bond. The successful loading of DOX onto the AuNPs was studied by spectroscopic methods and steady-state fluorescence, and the nanosystem pH-responsive character was validated under simulated biological conditions at different pH values (i.e., pH 4.6, 5.3, and 7.4). Considering that the fluorescence lifetime of DOX molecules at a specific point in the cell is a reliable indicator of the discrimination of the different states of the drug in the internalization path, i.e., released versus loaded, the kinetics of AuNPs@gelatin-hyd-DOX cellular uptake and DOX release was compared to that of free DOX, resulting in two different drug internalization pathways. Finally, cell viability tests were conducted against NIH:OVCAR-3 cell line to prove the efficiency of our chemotherapeutic nanosystem. TPE-FLIM technique could be considered promising for noninvasive, high-resolution imaging of cells with improved capabilities over current one-photon-excited FLIM.
Collapse
Affiliation(s)
| | | | | | | | | | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics , Babes-Bolyai University , M. Kogalniceanu str. 1 , 400084 Cluj-Napoca , Romania
| |
Collapse
|
3
|
Suarasan S, Licarete E, Astilean S, Craciun AM. Probing cellular uptake and tracking of differently shaped gelatin-coated gold nanoparticles inside of ovarian cancer cells by two-photon excited photoluminescence analyzed by fluorescence lifetime imaging (FLIM). Colloids Surf B Biointerfaces 2018; 166:135-143. [PMID: 29558704 DOI: 10.1016/j.colsurfb.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Nowadays, the non-linear optical effect of two-photon excited (TPE) fluorescence has recently grown in interest in recent years over other optical imaging method, due to improved 3D spatial resolution, deep penetrability and less photodamage of living organism owing to the excitation in near-infrared region (NIR). In parallel, gold nanoparticles (AuNPs) have gain considerable attention for NIR TPE bio-imaging applications due to their appealing ability to generate strong intrinsic photoluminescence (PL). Here, we demonstrate the capability of differently shaped gelatin-coated AuNPs to perform as reliable label-free contrast agents for the non-invasive NIR imaging of NIH:OVCAR-3 ovary cancer cells via TPE Fluorescence Lifetime Imaging Microscopy (FLIM). Examination of the spectroscopic profile of the intrinsic signals exhibited by AuNPs inside cells confirm the plasmonic nature of the emitted PL, while the evaluation of time-dependent profile of the TPE PL signal under continuous irradiation indicates the photo-stability of the signal revealing simultaneously a photo-blinking behavior. Finally, we assess the dependence of the TPE PL signal on laser excitation power and wavelength in view of contributing to a better understanding of plasmonic TPE PL in biological media towards the improvement of TPE FLIM imaging applications based on AuNPs.
Collapse
Affiliation(s)
- Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Emilia Licarete
- Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, 400084, Cluj-Napoca, Romania
| | - Ana-Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Loumaigne M, Midelet C, Doussineau T, Dugourd P, Antoine R, Stamboul M, Débarre A, Werts MHV. Optical extinction and scattering cross sections of plasmonic nanoparticle dimers in aqueous suspension. NANOSCALE 2016; 8:6555-6570. [PMID: 26935710 DOI: 10.1039/c6nr00918b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Absolute extinction and scattering cross sections for gold nanoparticle dimers were determined experimentally using a chemometric approach involving singular-value decomposition of the extinction and scattering spectra of slowly aggregating gold nanospheres in aqueous suspension. Quantitative spectroscopic data on plasmonic nanoparticle assemblies in liquid suspension are rare, in particular for particles larger than 40 nm, and in this work we demonstrate how such data can be obtained directly from the aggregating suspension. Our method can analyse, non invasively, the evolution of several sub-populations of nanoparticle assemblies. It may be applied to other self-assembling nanoparticle systems with an evolving optical response. The colloidal systems studied here are based on 20, 50 and 80 nm gold nanospheres in aqueous solutions containing sodium lipoate. In these systems, the reversible dimerisation process can be controlled using pH and ionic strength, and this control is rationalised in terms of DLVO theory. The dimers were identified in suspension by their translational and rotational diffusion through scattering correlation spectroscopy. Moreover, their gigadalton molecular weight was measured using electrospray charge-detection mass spectrometry, demonstrating that mass spectrometry can be used to study nanoparticles assemblies of very high molecular mass. The extinction and scattering cross sections calculated in the discrete-dipole approximation (DDA) agree very well with those obtained experimentally using our approach.
Collapse
Affiliation(s)
- Matthieu Loumaigne
- École normale supérieure de Rennes, CNRS, SATIE (UMR 8029), Campus de Ker Lann, F-35170 Bruz, France.
| | - Clyde Midelet
- École normale supérieure de Rennes, CNRS, SATIE (UMR 8029), Campus de Ker Lann, F-35170 Bruz, France.
| | - Tristan Doussineau
- Institut Lumière Matière, UMR CNRS 5306 and Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, UMR CNRS 5306 and Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, UMR CNRS 5306 and Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Meriem Stamboul
- Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Anne Débarre
- Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay Cedex, France and École normale supérieure de Cachan, CNRS, PPSM (UMR 8531), F-94235 Cachan, France
| | - Martinus H V Werts
- École normale supérieure de Rennes, CNRS, SATIE (UMR 8029), Campus de Ker Lann, F-35170 Bruz, France.
| |
Collapse
|
5
|
Loumaigne M, Vasanthakumar P, Lombardi A, Richard A, Débarre A. One-photon excited luminescence of single gold particles diffusing in solution under pulsed illumination. Phys Chem Chem Phys 2013; 15:4154-62. [DOI: 10.1039/c2cp43294c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Horneber A, Baudrion AL, Adam PM, Meixner AJ, Zhang D. Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers. Phys Chem Chem Phys 2013; 15:8031-4. [DOI: 10.1039/c3cp43349h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Fang Y, Chang WS, Willingham B, Swanglap P, Dominguez-Medina S, Link S. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS NANO 2012; 6:7177-84. [PMID: 22830934 DOI: 10.1021/nn3022469] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We report on the one-photon photoluminescence of gold nanorods with different aspect ratios. We measured photoluminescence and scattering spectra from 82 gold nanorods using single-particle spectroscopy. We found that the emission and scattering spectra closely resemble each other independent of the nanorod aspect ratio. We assign the photoluminescence to the radiative decay of the longitudinal surface plasmon generated after fast interconversion from excited electron-hole pairs that were initially created by 532 nm excitation. The emission intensity was converted to the quantum yield and was found to approximately exponentially decrease as the energy difference between the excitation and emission wavelength increased for gold nanorods with plasmon resonances between 600 and 800 nm. We compare this plasmon emission to its molecular analogue, fluorescence.
Collapse
Affiliation(s)
- Ying Fang
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|