1
|
Mattioli EJ, Bottoni A, Calvaresi M. DNAzymes at Work: A DFT Computational Investigation on the Mechanism of 9DB1. J Chem Inf Model 2019; 59:1547-1553. [DOI: 10.1021/acs.jcim.8b00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum - Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum - Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum - Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
2
|
Campesato L, Marforio TD, Giacinto P, Calvaresi M, Bottoni A. A Full QM Computational Study of the Catalytic Mechanism of α-1,4-Glucan Lyases. Chemphyschem 2018; 19:1514-1521. [DOI: 10.1002/cphc.201701332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lara Campesato
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Pietro Giacinto
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| |
Collapse
|
3
|
Chojnacka M, Feliks M, Beker W, Sokalski WA. Predicting substituent effects on activation energy changes by static catalytic fields. J Mol Model 2017; 24:28. [PMID: 29274012 PMCID: PMC5741779 DOI: 10.1007/s00894-017-3559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol] ![]()
Collapse
Affiliation(s)
- Martyna Chojnacka
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mikolaj Feliks
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Wiktor Beker
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - W Andrzej Sokalski
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
4
|
Yamazaki Y, Sezukuri K, Takada J, Kimura S, Ohmae M. A Novel Chemoenzymatic Synthesis of Sulfated Type 2 Tumor-Associated Carbohydrate Antigens by Transglycosylation of Sulfated Lewis X Oxazoline Catalyzed by Keratanase II. Chembiochem 2016; 17:1879-1886. [DOI: 10.1002/cbic.201600142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Yuji Yamazaki
- Department of Material Chemistry; Graduate School of Engineering; Kyoto University; Kyoto-daigaku-katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Kyohei Sezukuri
- Department of Material Chemistry; Graduate School of Engineering; Kyoto University; Kyoto-daigaku-katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Junko Takada
- Department of Material Chemistry; Graduate School of Engineering; Kyoto University; Kyoto-daigaku-katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsaku Kimura
- Department of Material Chemistry; Graduate School of Engineering; Kyoto University; Kyoto-daigaku-katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Masashi Ohmae
- Department of Material Chemistry; Graduate School of Engineering; Kyoto University; Kyoto-daigaku-katsura Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
5
|
Zaffagnini M, Fermani S, Calvaresi M, Orrù R, Iommarini L, Sparla F, Falini G, Bottoni A, Trost P. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana. Antioxid Redox Signal 2016; 24:502-17. [PMID: 26650776 DOI: 10.1089/ars.2015.6417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Cysteines and H2O2 are fundamental players in redox signaling. Cysteine thiol deprotonation favors the reaction with H2O2 that generates sulfenic acids with dual electrophilic/nucleophilic nature. The protein microenvironment surrounding the target cysteine is believed to control whether sulfenic acid can be reversibly regulated by disulfide formation or irreversibly oxidized to sulfinates/sulfonates. In this study, we present experimental oxidation kinetics and a quantum mechanical/molecular mechanical (QM/MM) investigation to elucidate the reaction of H2O2 with glycolytic and photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana (cytoplasmic AtGAPC1 and chloroplastic AtGAPA, respectively). RESULTS Although AtGAPC1 and AtGAPA have almost identical 3D structure and similar acidity of their catalytic Cys149, AtGAPC1 is more sensitive to H2O2 and prone to irreversible oxidation than AtGAPA. As a result, sulfenic acid is more stable in AtGAPA. INNOVATION Based on crystallographic structures of AtGAPC1 and AtGAPA, the reaction potential energy surface for Cys149 oxidation by H2O2 was calculated by QM. In both enzymes, sulfenic acid formation was characterized by a lower energy barrier than sulfinate formation, and sulfonate formation was prevented by very high energy barriers. Activation energies for both oxidation steps were lower in AtGAPC1 than AtGAPA, supporting the higher propensity of AtGAPC1 toward irreversible oxidation. CONCLUSIONS QM/MM calculations coupled to fingerprinting analyses revealed that two Arg of AtGAPA (substituted by Gly and Val in AtGAPC1), located at 8-15 Å distance from Cys149, are the major factors responsible for sulfenic acid stability, underpinning the importance of long-distance polar interactions in tuning sulfenic acid stability in native protein microenvironments.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Matteo Calvaresi
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Roberto Orrù
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Luisa Iommarini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Giuseppe Falini
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Andrea Bottoni
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| |
Collapse
|
6
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
7
|
Marforio TD, Giacinto P, Bottoni A, Calvaresi M. Computational Evidence for the Catalytic Mechanism of Tyrosylprotein Sulfotransferases: A Density Functional Theory Investigation. Biochemistry 2015; 54:4404-10. [PMID: 26108987 DOI: 10.1021/acs.biochem.5b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we have examined the mechanism of tyrosine O-sulfonation catalyzed by human TPST-2. Our computations, in agreement with Teramoto's hypothesis, indicate a concerted SN2-like reaction (with an activation barrier of 18.2 kcal mol(-1)) where the tyrosine oxygen is deprotonated by Glu(99) (base catalyst) and simultaneously attacks as a nucleophile the sulfuryl group. For the first time, using a quantum mechanics protocol of alanine scanning, we identified unequivocally the role of the amino acids involved in the catalysis. Arg(78) acts as a shuttle that "assists" the sulfuryl group moving from the 3'-phosphoadenosine-5'-phosphosulfate molecule to threonine and stabilizes the transition state (TS) by electrostatic interactions. The residue Lys(158) keeps close the residues participating in the overall H-bond network, while Ser(285), Thr(81), and Thr(82) stabilize the TS via strong hydrogen interactions and contribute to lower the activation barrier.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Pietro Giacinto
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
8
|
Jitonnom J, Sattayanon C, Kungwan N, Hannongbua S. A DFT study of the unusual substrate-assisted mechanism of Serratia marcescens chitinase B reveals the role of solvent and mutational effect on catalysis. J Mol Graph Model 2015; 56:53-9. [DOI: 10.1016/j.jmgm.2014.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
|
9
|
Jitonnom J, Limb MAL, Mulholland AJ. QM/MM free-energy simulations of reaction in Serratia marcescens Chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214. J Phys Chem B 2014; 118:4771-83. [PMID: 24730355 DOI: 10.1021/jp500652x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serratia marcescens Chitinase B (ChiB), belonging to the glycosidase family 18 (GH18), catalyzes the hydrolysis of β-1,4-glycosidic bond, with retention of configuration, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. Here, both elementary steps (glycosylation and deglycosylation) of the ChiB-catalyzed reaction are investigated by means of combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations at the SCC-DFTB/CHARMM22 level of theory. We examine the influence of the Asp142 protonation state on the reaction and the role that this residue performs in the reaction. Our simulations show that reaction with a neutral Asp142 is preferred and demonstrate that this residue provides electrostatic stabilization of the oxazolinium ion intermediate formed in the reaction. Insight into the conformational itinerary ((1,4)B↔(4)H5↔(4)C1) adopted by the substrate (bound in subsite -1) along the preferred reaction pathway is also provided by the simulations. The relative energies of the stationary points found along the reaction pathway calculated with SCC-DFTB and B3LYP were compared. The results suggest that SCC-DFTB is an accurate method for estimating the relative barriers for both steps of the reaction; however, it was found to overestimate the relative energy of an intermediate formed in the reaction when compared with the higher level of theory. Glycosylation is suggested to be a rate-determining step in the reaction with calculated overall reaction free-energy barrier of 20.5 kcal/mol, in a reasonable agreement with the 16.1 kcal/mol barrier derived from the experiment. The role of Tyr214 in catalysis was also investigated with the results, indicating that the residue plays a critical role in the deglycosylation step of the reaction. Simulations of the enzyme-product complex were also performed with an unbinding event suggested to have been observed, affording potential new mechanistic insight into the release of the product of ChiB.
Collapse
Affiliation(s)
- Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao , Phayao 56000, Thailand
| | | | | |
Collapse
|
10
|
Calvaresi M, Stenta M, Garavelli M, Altoé P, Bottoni A. Computational Evidence for the Catalytic Mechanism of Human Glutathione S-Transferase A3-3: A QM/MM Investigation. ACS Catal 2012. [DOI: 10.1021/cs200369b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Matteo Calvaresi
- Dipartimento di Chimica “G.
Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Marco Stenta
- Laboratory for Biomolecular
Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzwerland
| | - Marco Garavelli
- Dipartimento di Chimica “G.
Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Piero Altoé
- Dipartimento di Chimica “G.
Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G.
Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
11
|
Sousa SF, Fernandes PA, Ramos MJ. Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers. Phys Chem Chem Phys 2012; 14:12431-41. [DOI: 10.1039/c2cp41180f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Passos Ó, Fernandes PA, Ramos MJ. QM/MM Study of the Catalytic Mechanism of GalNAc Removal from GM2 Ganglioside Catalyzed by Human β-HexosaminidaseA. J Phys Chem B 2011; 115:14751-9. [DOI: 10.1021/jp205826n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Óscar Passos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | | | - Maria João Ramos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|