1
|
Espinosa-Garcia J, Bhowmick S. Kinetic study of the CN + C 2H 6 hydrogen abstraction reaction based on an analytical potential energy surface. Phys Chem Chem Phys 2024; 26:8344-8355. [PMID: 38391269 DOI: 10.1039/d3cp05930h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The temperature dependence of the thermal rate constants and kinetic isotope effects (KIE) of the CN + C2H6 gas-phase hydrogen abstraction reaction was theoretically determined within the 25-1000 K temperature range, i.e., from very low- to high-temperature regimes. Based on a recently developed full-dimensional analytical potential energy surface fitted to highly accurate explicitly correlated ab initio calculations, three different kinetic theories were used: canonical variational transition state theory (CVT), quasiclassical trajectory theory (QCT), and ring polymer molecular dynamics (RPMD) method for the computation of rate constants. We found that the thermal rate constants obtained with the three theories show a V-shaped temperature dependence, with a pronounced minimum near 200 K, qualitatively reproducing the experimental measurements. Among the three methods used in this work, the QCT and RPMD methods have the best agreement with the experiment at low and high temperatures, respectively, while the CVT model shows the largest discrepancies. The significant increase in the rate constant at very low temperatures in this very exothermic and practically barrierless reaction could be attributed to the large value of the impact parameter, possibly ruling out the role of the tunneling effect and the intermediate complexes in the entrance channel. The theoretical H/D KIE depicted a "normal" behaviour, i.e., values greater than unity, emulating the experimental measurements and improving previous theoretical results. Finally, the discrepancies between theory and experiments were analysed as a function of several factors, such as limitations of the kinetics theories and the potential energy surface, as well as the uncertainties in the experimental measurements.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Somnath Bhowmick
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus.
| |
Collapse
|
2
|
Goswami S, San Vicente Veliz JC, Upadhyay M, Bemish RJ, Meuwly M. Quantum and quasi-classical dynamics of the C( 3P) + O 2( 3Σ-g) → CO( 1Σ +) + O( 1D) reaction on its electronic ground state. Phys Chem Chem Phys 2022; 24:23309-23322. [PMID: 36165004 PMCID: PMC9533374 DOI: 10.1039/d2cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction on its electronic ground state is investigated by using time-dependent wave packet propagation (TDWP) and quasi-classical trajectory (QCT) simulations. For the moderate collision energies considered (Ec = 0.001 to 0.4 eV, corresponding to a range from 10 K to 4600 K) the total reaction probabilities from the two different treatments of the nuclear dynamics agree very favourably. The undulations present in P(E) from the quantum mechanical treatment can be related to stabilization of the intermediate CO2 complex with lifetimes on the 0.05 ps time scale. This is also confirmed from direct analysis of the TDWP simulations and QCT trajectories. Product diatom vibrational and rotational level resolved state-to-state reaction probabilities from TDWP and QCT simulations agree well except for the highest product vibrational states (v′ ≥ 15) and for the lowest product rotational states (j′ ≤ 10). Opening of the product vibrational level CO(v′ = 17) requires ∼0.2 eV from QCT and TDWP simulations with O2(j = 0) and decreases to 0.04 eV if all initial rotational states are included in the QCT analysis, compared with Ec > 0.04 eV obtained from experiments. It is thus concluded that QCT simulations are suitable for investigating and realistically describe the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction down to low collision energies when compared with results from a quantum mechanical treatment using TDWPs. The dynamics of the C(3P) + O2(3Σ−g) → CO(1Σ+) + O(1D) reaction on its electronic ground state is investigated by using time-dependent wave packet propagation (TDWP) and quasi-classical trajectory (QCT) simulations.![]()
Collapse
Affiliation(s)
- Sugata Goswami
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | | | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Raymond J Bemish
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland. .,Department of Chemistry, Brown University, RI, USA
| |
Collapse
|
3
|
Sharipov AS, Loukhovitski BI. Energy disposal into the vibrational degrees of freedom of bimolecular reaction products: Key factors and simple model. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Rivero Santamaría A, Larregaray P, Bonnet L, Dayou F, Monnerville M. The Intricate Dynamics of the Si( 3P) + OH(X 2Π) Reaction. J Phys Chem A 2019; 123:7683-7692. [DOI: 10.1021/acs.jpca.9b04699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alejandro Rivero Santamaría
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 du CNRS, Centre d’Études et de Recherches Lasers et Applications, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex, France
| | - Pascal Larregaray
- Groupe THEO, ISM UMR5255, CNRS/Université Bordeaux, Bat A12 351 cours de la libération, 33405 Talence cedex, France
| | - Laurent Bonnet
- Groupe THEO, ISM UMR5255, CNRS/Université Bordeaux, Bat A12 351 cours de la libération, 33405 Talence cedex, France
| | - Fabrice Dayou
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92195 Meudon, France
| | - Maurice Monnerville
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 du CNRS, Centre d’Études et de Recherches Lasers et Applications, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
5
|
Goswami S, Bussery-Honvault B, Honvault P, Mahapatra S. Effect of internal excitations of reagent diatom on initial state-selected dynamics of C + OH reaction on its second excited (14A″) electronic state. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1296195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sugata Goswami
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - B. Bussery-Honvault
- Laboratoire Interdisciplinaire Carnot de Bourgogne (UMR CNRS 6303), Univ. Bourgogne Franche-Comté, Dijon Cedex, France
| | - P. Honvault
- Laboratoire Interdisciplinaire Carnot de Bourgogne (UMR CNRS 6303), Univ. Bourgogne Franche-Comté, Dijon Cedex, France
- UFR ST, Université de Franche-Comté, Besançon Cedex, France
| | - S. Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
Quasi-classical trajectory calculations of cross sections and rate constants for the Si + OH → SiO + H reaction. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Goswami S, Rao TR, Mahapatra S, Bussery-Honvault B, Honvault P. Time-Dependent Quantum Wave Packet Dynamics of S + OH Reaction on Its Electronic Ground State. J Phys Chem A 2014; 118:5915-26. [DOI: 10.1021/jp504757g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugata Goswami
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - T. Rajagopala Rao
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
| | - S. Mahapatra
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - B. Bussery-Honvault
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
| | - P. Honvault
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
- UFR
ST, Université de Franche-Comté, 25030 Besançon
Cedex, France
| |
Collapse
|
8
|
Dayou F, Duflot D, Rivero-Santamaría A, Monnerville M. A global ab initio potential energy surface for the X2A' ground state of the Si + OH → SiO + H reaction. J Chem Phys 2013; 139:204305. [PMID: 24289352 DOI: 10.1063/1.4832324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the first global potential energy surface (PES) for the X(2)A' ground electronic state of the Si((3)P) + OH(X(2)Π) → SiO(X(1)Σg(+)) + H((2)S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si((3)P) and OH(X(2)Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.
Collapse
Affiliation(s)
- Fabrice Dayou
- Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (UMR 8112 du CNRS), Observatoire de Paris-Meudon, Université Pierre et Marie Curie, 92195 Meudon Cedex, France
| | | | | | | |
Collapse
|
9
|
Rao TR, Goswami S, Mahapatra S, Bussery-Honvault B, Honvault P. Time-dependent quantum wave packet dynamics of the C + OH reaction on the excited electronic state. J Chem Phys 2013; 138:094318. [DOI: 10.1063/1.4793395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Zanchet A, González-Lezana T, Roncero O, Jorfi M, Honvault P, Hankel M. An accurate study of the dynamics of the C+OH reaction on the second excited 14A″ potential energy surface. J Chem Phys 2012; 136:164309. [DOI: 10.1063/1.4705426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Liang JJ, Yang CL, Wang LZ, Zhang QG. Collision energy effect on the H′+BrH(ν=0,j=0)→H′Br+H reaction: A quasi-classical trajectory study. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|