1
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
2
|
Binz M, Bruder L, Chen L, Gelin MF, Domcke W, Stienkemeier F. Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor. OPTICS EXPRESS 2020; 28:25806-25829. [PMID: 32906864 DOI: 10.1364/oe.396108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The effects of high pulse intensity and chirp on two-dimensional electronic spectroscopy signals are experimentally investigated in the highly non-perturbative regime using atomic rubidium vapor as clean model system. Data analysis is performed based on higher-order Feynman diagrams and non-perturbative numerical simulations of the system response. It is shown that higher-order contributions may lead to a fundamental change of the static appearance and beating-maps of the 2D spectra and that chirped pulses enhance or suppress distinct higher-order pathways. We further give an estimate of the threshold intensity beyond which the high-intensity effects become visible for the system under consideration.
Collapse
|
3
|
Chen L, Palacino-González E, Gelin MF, Domcke W. Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order. J Chem Phys 2017; 147:234104. [DOI: 10.1063/1.5004763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
4
|
Rao BJ, Gelin MF, Domcke W. Resonant femtosecond stimulated Raman spectroscopy with an intense actinic
pump pulse: Application to conical intersections. J Chem Phys 2017; 146:084105. [DOI: 10.1063/1.4976317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B. Jayachander Rao
- Department of Chemistry, Technische Universität München,
D-85747 Garching, Germany
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München,
D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München,
D-85747 Garching, Germany
| |
Collapse
|
5
|
Tibbetts KM, Feng XJ, Rabitz H. Exploring experimental fitness landscapes for chemical synthesis and property optimization. Phys Chem Chem Phys 2017; 19:4266-4287. [DOI: 10.1039/c6cp06187g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The topology of experimental fitness landscapes for chemical optimization objectives is assessed through svr-based HDMR modeling.
Collapse
|
6
|
Nairat M, Konar A, Lozovoy VV, Beck WF, Blanchard GJ, Dantus M. Controlling S2 Population in Cyanine Dyes Using Shaped Femtosecond Pulses. J Phys Chem A 2016; 120:1876-85. [PMID: 26935762 DOI: 10.1021/acs.jpca.6b01835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha's rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp. For the cyanine dyes with polar solvation response IR144 and meso-piperidine substituted IR806, increased S2 emission was observed when using transform limited pulses, whereas chirped pulses led to increased S1 emission. The nonpolar solvated cyanine IR806, on the other hand, did not show S2 emission. A theoretical model, based on a nonperturbative solution of the equation of motion for the density matrix, is offered to explain and simulate the anomalous chirp dependence. Our findings, which depend on pulse properties beyond peak intensity, offer a photonic method to control S2 population thereby opening the door for the exploration of photochemical processes initiated from higher excited states.
Collapse
Affiliation(s)
- Muath Nairat
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Arkaprabha Konar
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Abstract
Controlling chemical reactions by light, i.e., the selective making and breaking of chemical bonds in a desired way with strong-field lasers, is a long-held dream in science. An essential step toward achieving this goal is to understand the interactions of atomic and molecular systems with intense laser light. The main focus of experiments that were performed thus far was on quantum-state population changes. Phase-shaped laser pulses were used to control the population of final states, also, by making use of quantum interference of different pathways. However, the quantum-mechanical phase of these final states, governing the system's response and thus the subsequent temporal evolution and dynamics of the system, was not systematically analyzed. Here, we demonstrate a generalized phase-control concept for complex systems in the liquid phase. In this scheme, the intensity of a control laser pulse acts as a control knob to manipulate the quantum-mechanical phase evolution of excited states. This control manifests itself in the phase of the molecule's dipole response accessible via its absorption spectrum. As reported here, the shape of a broad molecular absorption band is significantly modified for laser pulse intensities ranging from the weak perturbative to the strong-field regime. This generalized phase-control concept provides a powerful tool to interpret and understand the strong-field dynamics and control of large molecules in external pulsed laser fields.
Collapse
|
8
|
Moore Tibbetts K, Rabitz H. Constrained control landscape for population transfer in a two-level system. Phys Chem Chem Phys 2015; 17:3164-78. [DOI: 10.1039/c4cp04792c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling population transfer in a two-level quantum system reveals a landscape with a rich structure containing highly connected optimal regions.
Collapse
|
9
|
Consani C, Ruetzel S, Nuernberger P, Brixner T. Quantum Control Spectroscopy of Competing Reaction Pathways in a Molecular Switch. J Phys Chem A 2014; 118:11364-72. [DOI: 10.1021/jp509382m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Consani
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Ruetzel
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Kuhri S, Engelhardt V, Faust R, Guldi DM. En route towards panchromatic light harvesting: photophysical and electrochemical properties of Bodipy–porphyrazine conjugates. Chem Sci 2014. [DOI: 10.1039/c4sc00326h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Gelin MF, Rao BJ, Nest M, Domcke W. Domain of validity of the perturbative approach to femtosecond optical spectroscopy. J Chem Phys 2013; 139:224107. [DOI: 10.1063/1.4836636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Moore Tibbetts K, Xing X, Rabitz H. Exploring control landscapes for laser-driven molecular fragmentation. J Chem Phys 2013; 139:144201. [DOI: 10.1063/1.4824153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Gelin MF, Egorova D, Domcke W. Strong-pump strong-probe spectroscopy: effects of higher excited electronic states. Phys Chem Chem Phys 2013; 15:8119-31. [PMID: 23588665 DOI: 10.1039/c3cp44454f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present paper is devoted to the simulation of (integral and dispersed) pump-probe signals in the nonperturbative regime for a series of material systems with multiple electronic states and excited-state absorption. We show that strong-pump strong-probe spectroscopy permits the probing of vibrational wavepackets in high-lying and/or short-lived excited electronic states with a time resolution which is not limited by the pulse durations. The field strength can be regarded as an additional experimentally controllable parameter, which can be tuned to maximize the spectroscopic information for a given material system.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
| | | | | |
Collapse
|
14
|
Engelhardt V, Kuhri S, Fleischhauer J, García-Iglesias M, González-Rodríguez D, Bottari G, Torres T, Guldi DM, Faust R. Light-harvesting with panchromatically absorbing BODIPY–porphyrazine conjugates to power electron transfer in supramolecular donor–acceptor ensembles. Chem Sci 2013. [DOI: 10.1039/c3sc51622a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Wollenhaupt M, Baumert T. Ultrafast laser control of electron dynamics in atoms, molecules and solids. Faraday Discuss 2011; 153:9-26; discussion 73-91. [DOI: 10.1039/c1fd00109d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|