1
|
Hu W, Tong Y, Liu J, Chen P, Yang H, Feng S. Improving acid resistance of Escherichia coli base on the CfaS-mediated membrane engineering strategy derived from extreme acidophile. Front Bioeng Biotechnol 2023; 11:1158931. [PMID: 37025359 PMCID: PMC10070827 DOI: 10.3389/fbioe.2023.1158931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Industrial microorganisms used for the production of organic acids often face challenges such as inhibited cell growth and reduced production efficiency due to the accumulation of acidic metabolites. One promising way for improving the acid resistance of microbial cells is to reconstruct their membranes. Herein, the overexpression of cfa2 from extreme acidophile endowed E. coli with high-performance on resistance to the acid stress. The engineered strain M1-93-Accfa2, constructed by CRISPR/Cas9-mediated chromosome integration, also exhibited a significantly higher resistance to severe acid stress. The analysis of fatty acid profiles indicated that the proportion of Cy-19:0 in the cell membrane of M1-93-Accfa2 increased by 5.26 times compared with the control, while the proportion of C18:1w9c decreased by 5.81 times. Correspondingly, the permeability and fluidity of the membrane decreased significantly. HPLC analysis demonstrated that the contents of intracellular glutamic acid, arginine, methionine and aspartic acid of M1-93-Accfa2 were 2.59, 2.04, 22.07 and 2.65 times that of the control after environmental acidification, respectively. Meanwhile, transmission electron microscopy observation indicated that M1-93-Accfa2 could maintain a plumper cell morphology after acid stimulation. M1-93-Accfa2 also exhibited higher-performance on the resistance to organic acids, especially succinic acid stress. These results together demonstrated the great potential of M1-93-Accfa2 constructed here in the production of organic acids.
Collapse
Affiliation(s)
- Wenbo Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junjie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Panyan Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
- *Correspondence: Hailin Yang, ; Shoushuai Feng,
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
- *Correspondence: Hailin Yang, ; Shoushuai Feng,
| |
Collapse
|
2
|
Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK, Chae PS. Self-Assembly Behavior and Application of Terphenyl-Cored Trimaltosides for Membrane-Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Chemistry 2019; 25:11545-11554. [PMID: 31243822 DOI: 10.1002/chem.201902468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/13/2023]
Abstract
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d-maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2 AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.,Current address: Department of Chemistry, Mirpur University of Science & Technology, Mirpur, AJK, 10250, Pakistan)
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Qianhui Qu
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Georgios Skiniotis
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
3
|
tRNA Modification Detection Using Graphene Nanopores: A Simulation Study. Biomolecules 2017; 7:biom7030065. [PMID: 32962315 PMCID: PMC5618246 DOI: 10.3390/biom7030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
There are over 100 enzyme-catalyzed modifications on transfer RNA (tRNA) molecules. The levels and identity of wobble uridine (U) modifications are affected by environmental conditions and diseased states, making wobble U detection a potential biomarker for exposures and pathological conditions. The current detection of RNA modifications requires working with nucleosides in bulk samples. Nanopore detection technology uses a single-molecule approach that has the potential to detect tRNA modifications. To evaluate the feasibility of this approach, we have performed all-atom molecular dynamics (MD) simulation studies of a five-layered graphene nanopore by localizing canonical and modified uridine nucleosides. We found that in a 1 M KCl solution with applied positive and negative biases not exceeding 2 V, nanopores can distinguish U from 5-carbonylmethyluridine (cm5U), 5-methoxycarbonylmethyluridine (mcm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) based on changes in the resistance of the nanopore. Specifically, we observed that in nanopores with dimensions less than 3 nm diameter, a localized mcm5Um and mcm5U modifications could be clearly distinguished from the canonical uridine, while the other modifications showed a modest yet detectable decrease in their respective nanopore conductance. We have compared the results between nanopores of various sizes to aid in the design, optimization, and fabrication of graphene nanopores devices for tRNA modification detection.
Collapse
|
4
|
Filippi M, Patrucco D, Martinelli J, Botta M, Castro-Hartmann P, Tei L, Terreno E. Novel stable dendrimersome formulation for safe bioimaging applications. NANOSCALE 2015; 7:12943-12954. [PMID: 26167654 DOI: 10.1039/c5nr02695d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which have been recently proposed as innovative nanocarriers for biomedical applications. Recently, we have demonstrated that dendrimersomes self-assembled from (3,5)12G1-PE-BMPA-G2-(OH)8 dendrimers can be successfully loaded with hydrophilic and amphiphilic imaging contrast agents. Here, we present two newly synthesized low generation isomeric JDs: JDG0G1(3,5) and JDG0G1(3,4). Though less branched than the above-cited dendrimers, they retain the ability to form self-assembled, almost monodisperse vesicular nanoparticles. This contribution reports on the characterization of such nanovesicles loaded with the clinically approved MRI probe Gadoteridol and the comparison with the related nanoparticles assembled from more branched dendrimers. Special emphasis was given to the in vitro stability test of the systems in biologically relevant media, complemented by preliminary in vivo data about blood circulation lifetime collected from healthy mice. The results point to very promising safety and stability profiles of the nanovesicles, in particular for those made of JDG0G1(3,5), whose spontaneous self-organization in water gives rise to a homogeneous suspension. Importantly, the blood lifetimes of these systems are comparable to those of standard liposomes. By virtue of the reported results, the herein presented nanovesicles augur well for future use in a variety of biomedical applications.
Collapse
Affiliation(s)
- M Filippi
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Università degli Studi di Torino, Via Nizza 52, Torino, 10126, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Gleisner M, Mey I, Barbot M, Dreker C, Meinecke M, Steinem C. Driving a planar model system into the 3(rd) dimension: generation and control of curved pore-spanning membrane arrays. SOFT MATTER 2014; 10:6228-6236. [PMID: 25012509 DOI: 10.1039/c4sm00702f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO(2) substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 μm and a pore depth of 10 μm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP(2) specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer.
Collapse
Affiliation(s)
- Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Affiliation(s)
- Meng-Xin Hu
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310035 China
| | - Yan Fang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Kang Xu
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
8
|
Warkiani ME, Bhagat AAS, Khoo BL, Han J, Lim CT, Gong HQ, Fane AG. Isoporous micro/nanoengineered membranes. ACS NANO 2013; 7:1882-1904. [PMID: 23442009 DOI: 10.1021/nn305616k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isoporous membranes are versatile structures with numerous potential and realized applications in various fields of science such as micro/nanofiltration, cell separation and harvesting, controlled drug delivery, optics, gas separation, and chromatography. Recent advances in micro/nanofabrication techniques and material synthesis provide novel methods toward controlling the detailed microstructure of membrane materials, allowing fabrication of membranes with well-defined pore size and shape. This review summarizes the current state-of-the-art for isoporous membrane fabrication using different techniques, including microfabrication, anodization, and advanced material synthesis. Various applications of isoporous membranes, such as protein filtration, pathogen isolation, cell harvesting, biosensing, and drug delivery, are also presented.
Collapse
Affiliation(s)
- Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.
| | | | | | | | | | | | | |
Collapse
|
9
|
Agostini A, Sancenón F, Martínez-Máñez R, Marcos MD, Soto J, Amorós P. A photoactivated molecular gate. Chemistry 2012; 18:12218-21. [PMID: 22907729 DOI: 10.1002/chem.201201127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/16/2012] [Indexed: 01/17/2023]
Affiliation(s)
- Alessandro Agostini
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Departmento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Tian Y, Wen L, Hou X, Hou G, Jiang L. Bioinspired Ion-Transport Properties of Solid-State Single Nanochannels and Their Applications in Sensing. Chemphyschem 2012; 13:2455-70. [DOI: 10.1002/cphc.201200057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Indexed: 12/27/2022]
|