1
|
Zhu X, Yan X, Yang S, Wang Y, Wang S, Tian Y. DNA-Mediated Assembly of Carbon Nanomaterials. Chempluschem 2022; 87:e202200089. [PMID: 35589623 DOI: 10.1002/cplu.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Indexed: 02/18/2024]
Abstract
Carbon nanomaterials (CNMs) have attracted extensive attentions on account of their superior electrical, mechanical, optical, and biological properties. However, the dimensional limit and irregular arrangement have hampered their further application. It is necessary to find an easy, efficient and controllable way to assemble CNMs into well-ordered array. DNA nanotechnology, owning to the advantages of precise programmability, highly structural predictability and spatial addressability, has been widely applied in the assembly of CNMs. Summarizing the progress and achievements in this field will be of great value to related studies. Herein, based on the different dimensions of CNMs containing 0-dimensional (0D) carbon dots (CDs), fullerenes, 1-dimensional (1D) carbon nanotubes (CNTs) and 2-dimensional (2D) graphene, we introduced the conjugation strategies between DNA and CNMs, their different assembly methods and their applications. In addition, we also discuss the existing challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Xurong Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Xuehui Yan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Sichang Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Shuang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, 518055, Shenzhen, P. R. China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| |
Collapse
|
2
|
Vittala SK, Han D. DNA-Guided Assemblies toward Nanoelectronic Applications. ACS APPLIED BIO MATERIALS 2020; 3:2702-2722. [PMID: 35025404 DOI: 10.1021/acsabm.9b01178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeepa Kulala Vittala
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
3
|
Corletto A, Shapter JG. Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001778. [PMID: 33437571 PMCID: PMC7788638 DOI: 10.1002/advs.202001778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/09/2023]
Abstract
Carbon nanotube (CNT) devices and electronics are achieving maturity and directly competing or surpassing devices that use conventional materials. CNTs have demonstrated ballistic conduction, minimal scaling effects, high current capacity, low power requirements, and excellent optical/photonic properties; making them the ideal candidate for a new material to replace conventional materials in next-generation electronic and photonic systems. CNTs also demonstrate high stability and flexibility, allowing them to be used in flexible, printable, and/or biocompatible electronics. However, a major challenge to fully commercialize these devices is the scalable placement of CNTs into desired micro/nanopatterns and architectures to translate the superior properties of CNTs into macroscale devices. Precise and high throughput patterning becomes increasingly difficult at nanoscale resolution, but it is essential to fully realize the benefits of CNTs. The relatively long, high aspect ratio structures of CNTs must be preserved to maintain their functionalities, consequently making them more difficult to pattern than conventional materials like metals and polymers. This review comprehensively explores the recent development of innovative CNT patterning techniques with nanoscale lateral resolution. Each technique is critically analyzed and applications for the nanoscale-resolution approaches are demonstrated. Promising techniques and the challenges ahead for future devices and applications are discussed.
Collapse
Affiliation(s)
- Alexander Corletto
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
4
|
|
5
|
Zhang S, Pelligra CI, Feng X, Osuji CO. Directed Assembly of Hybrid Nanomaterials and Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705794. [PMID: 29520839 DOI: 10.1002/adma.201705794] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Indexed: 05/19/2023]
Abstract
Hybrid nanomaterials are molecular or colloidal-level combinations of organic and inorganic materials, or otherwise strongly dissimilar materials. They are often, though not exclusively, anisotropic in shape. A canonical example is an inorganic nanorod or nanosheet sheathed in, or decorated by, a polymeric or other organic material, where both the inorganic and organic components are important for the properties of the system. Hybrid nanomaterials and nanocomposites have generated strong interest for a broad range of applications due to their functional properties. Generating macroscopic assemblies of hybrid nanomaterials and nanomaterials in nanocomposites with controlled orientation and placement by directed assembly is important for realizing such applications. Here, a survey of critical issues and themes in directed assembly of hybrid nanomaterials and nanocomposites is provided, highlighting recent efforts in this field with particular emphasis on scalable methods.
Collapse
Affiliation(s)
- Shanju Zhang
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Candice I Pelligra
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| | - Xunda Feng
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Oruc B, Celik S, Hayat Soytas S, Unal H. DNA Directed Self-Assembly of Single Walled Carbon Nanotubes into Three-Way Junction Nanostructures. ACS OMEGA 2018; 3:4157-4162. [PMID: 30023887 PMCID: PMC6044768 DOI: 10.1021/acsomega.8b00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
Utilization of a self-assembled two-dimensional DNA nanostructure to arrange single-walled carbon nanotubes (SWNTs) into predetermined structures at controllable angles is presented. A specially designed DNA three-way junction (3WJ) composed of three double-stranded DNA arms containing single-stranded overhang sequences was prepared by annealing of partially complementary ssDNA sequences and ultrasonicated with SWNTs, resulting in DNA-3WJ/SWNT hybrid nanostructures. Utilization of DNA-3WJ not only allowed the precise dispersion of SWNTs but also acted as a rigid template for the self-assembly of SWNTs into three-armed junctions at an angle of approximately 120° to each other as visualized by scanning electron microscopy and atomic force microscopy. Prepared DNA-3WJ/SWNT nanostructures were also demonstrated to have the appropriate binding sites for fluorophores, providing a simple method for the fluorescent labeling of SWNTs. When ssDNA sequences forming the DNA-3WJ are ultrasonicated with SWNTs, followed by annealing of resulting ssDNA wrapped SWNTs, instead of hybrid junctions composed of three SWNT molecules, a web-like structure composed of interconnected SWNT junctions was obtained. The design approaches demonstrated here provide simple methods for the arrangement of SWNTs into desired nanostructures utilizing pre-assembled DNA nanostructures as linkers in aqueous solution through noncovalent interactions which can greatly contribute to efforts along the controlled assembly of SWNTs.
Collapse
Affiliation(s)
- Betul Oruc
- Faculty
of Engineering and Natural Sciences, Sabanci
University, 34956 Istanbul, Turkey
| | - Suleyman Celik
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
| | - Serap Hayat Soytas
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
| | - Hayriye Unal
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
- E-mail: (H.U.)
| |
Collapse
|
7
|
Penzo E, Palma M, Chenet DA, Ao G, Zheng M, Hone JC, Wind SJ. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. ACS NANO 2016; 10:2975-2981. [PMID: 26807948 DOI: 10.1021/acsnano.6b00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA-wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of metallic source/drain electrodes were fabricated. Devices made with semiconducting nanotubes behaved as typical p-type field effect transistors (FETs), whereas devices made with metallic nanotubes had a finite resistance with little or no gate modulation. This scalable, high resolution approach represents an important step forward toward the potential implementation of complex SWCNT devices and circuits.
Collapse
Affiliation(s)
- Erika Penzo
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| | - Matteo Palma
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| | - Daniel A Chenet
- Department of Mechanical Engineering, Columbia University , New York, New York 10027, United States
| | - Geyou Ao
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Ming Zheng
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University , New York, New York 10027, United States
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| |
Collapse
|
8
|
Ghosh S, Patel N, Chakrabarti R. Probing the Salt Concentration Dependent Nucleobase Distribution in a Single-Stranded DNA–Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics. J Phys Chem B 2016; 120:455-66. [DOI: 10.1021/acs.jpcb.5b12044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Nisheet Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| |
Collapse
|
9
|
Penzo E, Palma M, Wang R, Cai H, Zheng M, Wind SJ. Directed Assembly of End-Functionalized Single Wall Carbon Nanotube Segments. NANO LETTERS 2015; 15:6547-6552. [PMID: 26340414 DOI: 10.1021/acs.nanolett.5b02220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A key impediment to the implementation of a nanoelectronics technology based on single wall carbon nanotubes (SWCNTs) is the inability to arrange them in a manner suitable for integration into complex circuits. As a step toward addressing this problem, we explore the binding of fixed-length, end-functionalized SWCNT segments to lithographically defined nanoscale anchors, such that individual SWCNTs can be placed with control over position and orientation. Both monovalent and bivalent bindings are explored using covalent and noncovalent binding chemistries. Placement efficiency is assessed in terms of overall yield of SWCNT binding, as well as binding specificity and the degree of nonspecific binding. Placement yields as high as 93% and 79% are achieved, respectively, for covalent binding and for binding through DNA hybridization. Orientational control of the SWCNT segments is achieved with 95% and 51% efficiency for monovalent and bivalent bindings, respectively. This represents a new approach that could pave the way toward complex SWCNT devices and circuits.
Collapse
Affiliation(s)
- Erika Penzo
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| | - Matteo Palma
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| | - Risheng Wang
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Haogang Cai
- Department of Mechanical Engineering, Columbia University , New York, New York 10027, United States
| | - Ming Zheng
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| |
Collapse
|
10
|
Maji B, Samanta SK, Bhattacharya S. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. NANOSCALE 2014; 6:3721-3730. [PMID: 24569668 DOI: 10.1039/c3nr05045a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-stranded DNA (ss-DNA) oligomers (dA20, d[(C3TA2)3C3] or dT20) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA20 takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d[(C3TA2)3C3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at ∼90 °C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
11
|
Noh H, Goodman SM, Mohan P, Goodwin AP, Nagpal P, Cha JN. Direct conjugation of DNA to quantum dots for scalable assembly of photoactive thin films. RSC Adv 2014. [DOI: 10.1039/c3ra47689h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Xu PF, Noh H, Lee JH, Domaille DW, Nakatsuka MA, Goodwin AP, Cha JN. Imparting the unique properties of DNA into complex material architectures and functions. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2013; 16:290-296. [PMID: 25525408 PMCID: PMC4266936 DOI: 10.1016/j.mattod.2013.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA's ability to control a material's architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors.
Collapse
Affiliation(s)
- Phyllis F. Xu
- Department of Nanoengineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr. MC 0448, La Jolla, CA 92093-0448, USA
| | - Hyunwoo Noh
- Department of Nanoengineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr. MC 0448, La Jolla, CA 92093-0448, USA
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO 80303, USA
| | - Ju Hun Lee
- Department of Nanoengineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr. MC 0448, La Jolla, CA 92093-0448, USA
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO 80303, USA
| | - Dylan W. Domaille
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO 80303, USA
| | - Matthew A. Nakatsuka
- Department of Nanoengineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr. MC 0448, La Jolla, CA 92093-0448, USA
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO 80303, USA
| | - Jennifer N. Cha
- Department of Nanoengineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr. MC 0448, La Jolla, CA 92093-0448, USA
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO 80303, USA
| |
Collapse
|
13
|
Tørring T, Gothelf KV. DNA nanotechnology: a curiosity or a promising technology? F1000PRIME REPORTS 2013; 5:14. [PMID: 23710328 PMCID: PMC3643079 DOI: 10.12703/p5-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA nanotechnology, the design and self-assembly of artificial nucleic acid-based structures or systems, has developed with breathtaking pace in recent years. The technology offers an unparalleled ability to control structure and function at the molecular level and the sizes of the structures are expanding towards the micrometer domain. The question is whether the technology offers solutions to any real-life problems, or if it will remain an academic discipline. Here, we discuss this question by extrapolating from recent developments in the field.
Collapse
|
14
|
Mangalum A, Rahman M, Norton ML. Site-Specific Immobilization of Single-Walled Carbon Nanotubes onto Single and One-Dimensional DNA Origami. J Am Chem Soc 2013; 135:2451-4. [PMID: 23384162 DOI: 10.1021/ja312191a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anshuman Mangalum
- Department
of Chemistry, Marshall University, Huntington,
West Virginia 25755, United States
| | - Masudur Rahman
- Department
of Chemistry, Marshall University, Huntington,
West Virginia 25755, United States
| | - Michael L. Norton
- Department
of Chemistry, Marshall University, Huntington,
West Virginia 25755, United States
| |
Collapse
|