1
|
Bombaci M, Lo Presti F, Pellegrino AL, Lippi M, Rossi P, Tacconi L, Sorace L, Malandrino G. Bifunctional heterobimetallic 3d-4f [Co(II)-RE, RE = Dy, Eu, and Y] ionic complexes: modulation of the magnetic-luminescence behaviour. Dalton Trans 2024; 54:274-289. [PMID: 39535900 DOI: 10.1039/d4dt01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)3]-[RE(hfa)2tetraglyme]+ (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions. Electron paramagnetic resonance (EPR) spectroscopy confirms the constancy of the electronic structure of the cobalt(II) moiety and the significant contribution of the lanthanide ions to the magnetic properties of the compounds. The non-trivial single-ion magnetic properties of cobalt(II), dysprosium(III), and europium(III) centres, and the effect of their interactions are investigated by a detailed static and dynamic magnetic susceptibility study. Moreover, optical analyses have been carried out showing the π-π* intraligand (IL) transition of the β-diketonate ligand and the d-d cobalt(II) transitions. Luminescence characterization of dysprosium(III) and europium(III) derivatives exhibits their characteristic emission bands, indicative of the unique photophysical properties conferred by the lanthanide ions. Thermal studies using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal good thermal stability and volatility properties, underscoring the interesting nature of these ionic complexes for potential deposition on suitable substrates. In summary, these heterobimetallic complexes show intriguing optical and magnetic properties with potential implications across diverse scientific disciplines, including molecular magnetism, optoelectronics, and materials science.
Collapse
Affiliation(s)
- Matteo Bombaci
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Francesca Lo Presti
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna L Pellegrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Martina Lippi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Leonardo Tacconi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Sorace
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Graziella Malandrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
2
|
Blanco-Rey M, Castrillo R, Ali K, Gargiani P, Ilyn M, Gastaldo M, Paradinas M, Valbuena MA, Mugarza A, Ortega JE, Schiller F, Fernández L. The Role of Rare-Earth Atoms in the Anisotropy and Antiferromagnetic Exchange Coupling at a Hybrid Metal-Organic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402328. [PMID: 39150001 DOI: 10.1002/smll.202402328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Magnetic anisotropy and magnetic exchange interactions are crucial parameters that characterize the hybrid metal-organic interface, a key component of an organic spintronic device. It is shown that the incorporation of 4f RE atoms to hybrid metal-organic interfaces of CuPc/REAu2 type (RE = Gd, Ho) constitutes a feasible approach toward on-demand magnetic properties and functionalities. The GdAu2 and HoAu2 substrates differ in their magnetic anisotropy behavior. Remarkably, the HoAu2 surface promotes the inherent out-of-plane anisotropy of CuPc, owing to the match between the anisotropy axis of substrate and molecule. Furthermore, the presence of RE atoms leads to a spontaneous antiferromagnetic exchange coupling at the interface, induced by the 3d-4f superexchange interaction between the unpaired 3d electron of CuPc and the 4f electrons of the RE atoms. It is shown that 4f RE atoms with unquenched quantum orbital momentum ( L $L$ ), as it is the case of Ho, induce an anisotropic interfacial exchange coupling.
Collapse
Affiliation(s)
- María Blanco-Rey
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Rodrigo Castrillo
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Khadiza Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Chalmers University of Technology, Göteborg, Göteborg, 412 96, Sweden
| | | | - Maxim Ilyn
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Michele Gastaldo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Markos Paradinas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Miguel A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Madrid, 28049, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- CIC nanoGUNE-BRTA, San Sebastián, 20018, Spain
| |
Collapse
|
3
|
Ruan TT, Moreno-Pineda E, Paul S, Schulze M, Schlittenhardt S, Mizuno A, Wernsdorfer W, Ruben M. Modulating quantum tunnelling of magnetization in Dy isotopologue dimers. Dalton Trans 2024; 53:17281-17290. [PMID: 39373196 DOI: 10.1039/d4dt01769b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Qudits are anticipated to streamline quantum computation by minimizing iterations, lowering error rates, and facilitating error correction. It has been shown that Dy(III)-based molecular systems can act as qudits with expanded Hilbert spaces. Achieving a robust intramolecular interaction, whether exchange or dipolar, is crucial for spanning the Hilbert space of qudits; hence, short Dy(III)⋯Dy(III) distances are required. Looking for multilevel systems that can be employed as qudits, we have synthesized and characterized two dysprosium-based isotopologues: [163Dy2(BTFA)4(PHZP)2]0 (1(I=5/2)) and [164Dy2(BTFA)4(PHZP)2]0 (2(I=0)), where BTFA = 3-benzoyl-1,1,1-trifluoroacetone and PHZP = N'-[(E)-(pyrazin-2-yl)methylidene]pyrazine-2-carbohydrazonate. Both complexes showed slow magnetic relaxation at zero applied magnetic field. μSQUID investigations, at milli-Kelvin temperatures, and direct and alternating current magnetic measurements reveal distinctions in the magnetic behavior between the two complexes and an operative interaction between the Dy(III) centers. We find that the presence or absence of the nuclear spin plays a minor role in the magnetic properties above 2 K. On the contrary, at milli-Kelvin temperatures, μSQUID studies show enhanced relaxation in 1(I=5/2), attributed to several quantum tunnelling pathways enabled by hyperfine and quadrupole interactions. The interplay between the antiferromagnetic coupling and enhanced relaxation indicates that the exchange coupling influences the relaxation mechanisms at different temperature ranges.
Collapse
Affiliation(s)
- Ting-Ting Ruan
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| | - Eufemio Moreno-Pineda
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, Panamá, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany.
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany.
| | - Michael Schulze
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany.
| | - Sören Schlittenhardt
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131, Karlsruhe, Germany.
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institutde Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| |
Collapse
|
4
|
Curti L, Prado Y, Michel A, Talbot D, Baptiste B, Otero E, Ohresser P, Journaux Y, Cartier-Dit-Moulin C, Dupuis V, Fleury B, Sainctavit P, Arrio MA, Fresnais J, Lisnard L. Room-temperature-persistent magnetic interaction between coordination complexes and nanoparticles in maghemite-based nanohybrids. NANOSCALE 2024; 16:10607-10617. [PMID: 38758111 DOI: 10.1039/d4nr01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Maghemite nanoparticles functionalised with Co(II) coordination complexes at their surface show a significant increase of their magnetic anisotropy, leading to a doubling of the blocking temperature and a sixfold increase of the coercive field. Magnetometric studies suggest an enhancement that is not related to surface disordering, and point to a molecular effect involving magnetic exchange interactions mediated by the oxygen atoms at the interface as its source. Field- and temperature-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) studies show that the magnetic anisotropy enhancement is not limited to surface atoms and involves the core of the nanoparticle. These studies also point to a mechanism driven by anisotropic exchange and confirm the strength of the magnetic exchange interactions. The coupling between the complex and the nanoparticle persists at room temperature. Simulations based on the XMCD data give an effective exchange field value through the oxido coordination bridge between the Co(II) complex and the nanoparticle that is comparable to the exchange field between iron ions in bulk maghemite. Further evidence of the effectiveness of the oxido coordination bridge in mediating the magnetic interaction at the interface is given with the Ni(II) analog to the Co(II) surface-functionalised nanoparticles. A substrate-induced magnetic response is observed for the Ni(II) complexes, up to room temperature.
Collapse
Affiliation(s)
- Leonardo Curti
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Yoann Prado
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Delphine Talbot
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoît Baptiste
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Yves Journaux
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | | | - Vincent Dupuis
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoit Fleury
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Philippe Sainctavit
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Marie-Anne Arrio
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Laurent Lisnard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| |
Collapse
|
5
|
Palii A, Tsukerblat B. Thermal processes in anisotropic metal complexes induced by non-adiabatic switching of magnetic field. Dalton Trans 2024; 53:9161-9170. [PMID: 38742462 DOI: 10.1039/d4dt00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this article we analyze the thermal processes in magnetically anisotropic metal complexes under the action of non-adiabatic switching of magnetic field. Using the non-stationary perturbation theory for the case of sudden perturbation, we show that this field can cause not only heat release, but also heat absorption, interconnected with the axial zero field splitting (parameter D) in a paramagnetic metal complex. As an illustrative example we consider the simplest S = 1-complexes having "easy axis" and "easy plane" types of anisotropy influenced by the magnetic field that is suddenly turned off. We demonstrate that the character of the thermal processes (heat dissipation or absorption) depends on the sign of D and direction of applied field and so the analysis of these processes can be in principle used as a complementary tool (in addition to SQIUD magnetometry, EPR spectroscopy and INS) for studying magnetic anisotropy. The conditions under which the non-adiabatic switching of the magnetic field gives rise to the heat absorption are revealed. This unusual phenomenon, which can be called "nonadiabatic field switching cooling", may have practical applications.
Collapse
Affiliation(s)
- Andrew Palii
- Laboratory of Molecular Magnetic Nanomaterials, Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Chernogolovka, Moscow Region, 142432, Russian Federation.
| | - Boris Tsukerblat
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| |
Collapse
|
6
|
Zabala-Lekuona A, Landart-Gereka A, Quesada-Moreno MM, Mota AJ, Díaz-Ortega IF, Nojiri H, Krzystek J, Seco JM, Colacio E. Zero-Field SMM Behavior Triggered by Magnetic Exchange Interactions and a Collinear Arrangement of Local Anisotropy Axes in a Linear Co 3II Complex. Inorg Chem 2023. [PMID: 37991724 DOI: 10.1021/acs.inorgchem.3c02817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A new linear trinuclear Co(II)3 complex with a formula of [{Co(μ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm-1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(μ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.
Collapse
Affiliation(s)
- Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Aritz Landart-Gereka
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - María Mar Quesada-Moreno
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Antonio J Mota
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Ismael F Díaz-Ortega
- Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Jurek Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - José M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
8
|
Novitchi G, Shova S, Train C. Investigation by Chemical Substitution within 2p-3d-4f Clusters of the Cobalt(II) Role in the Magnetic Behavior of [vdCoLn] 2 (vd = Verdazyl Radical). Inorg Chem 2022; 61:17037-17048. [PMID: 36240010 DOI: 10.1021/acs.inorgchem.2c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,5-Dimethyl-3-(3'-(hydroxymethyl)-2'-pyridine)-6-oxotetrazane (H3vdpyCH2OH) or its oxidized verdazyl form (vdpyCH2OH) reacted with transition metal and/or lanthanide acetates to yield [(vdpyCH2O)2Co2Ln2(acO)8] (Ln = Y(III): ICo,Y; Gd(III): ICo,Gd), [(vdpyCH2O)2M3(acO)4] (M = Zn(II): IIZn; Co(II): IICo) and [(vdpyCH2OH)Zn(acO)2] (IIIZn) through self-assembly implying a complex-as-ligand intermediate. Single-crystal diffraction reveals that IMT,Ln are composed of 2p-3d-4f centrosymmetric clusters with verdazyl radicals at the two ends coordinated to the transition-metal ion in a tridentate mode and to the {Ln2(acO)4} lanthanide central core in a monodentate mode through its alkoxo moiety. In ICo,Gd, the transition-metal ions adopt an irregular octahedral environment, and the {Ln2(acO)4} core adopts a paddlewheel motif, whereas in ICo,Y, the transition metal is pentacoordinated, and the central core contains only two acetate bridges. Going from ICo,Y to IICo, the central {Y2(acO)4} core is replaced by an axially compressed octahedral cobalt(II) center, whereas the outer parts of the molecule remain still. The dc magnetic studies revealed that the alternate π-stacking of the verdazyl radicals in IIZn led to the formation of alternate antiferromagnetically coupled 1D chains with Jvd-vd = -8.2(1) cm-1 and Jvd-vd' = -7.6(1) cm-1 (-2J convention). In ICo,Y, a complex fitting procedure allowed us to retrieve a complete set of magnetic parameters to take into account both the magnetic anisotropy of the cobalt(II) centers and intra- and inter-molecular exchange effects. For ICo,Y, it led to gCo = 2.13(4), DCo = 100(2) cm-1, ECo = 19.9(5) cm-1, JCo-vd = +26.5(4) cm-1, and Jvd-vd = -7.95(4) cm-1. ac magnetic susceptibility of ICo,Y, ICo,Gd and IICo did not reveal any slow relaxation of the magnetization even when a dc external magnetic field up to 2000 Oe was applied.
Collapse
Affiliation(s)
- Ghénadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI) Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS F-38042 Grenoble, France
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses (LNCMI) Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS F-38042 Grenoble, France
| |
Collapse
|
9
|
The Role of the Bridge in Single-Ion Magnet Behaviour: Reinvestigation of Cobalt(II) Succinate and Fumarate Coordination Polymers with Nicotinamide. INORGANICS 2022. [DOI: 10.3390/inorganics10090128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two previously synthesized cobalt(II) coordination polymers; {[Co(μ2-suc)(nia)2(H2O)2]·2H2O}n (suc = succinate(2−), nia = nicotinamide) and [Co(μ2-fum)(nia)2(H2O)2]n (fum = fumarate(2−)) were prepared and thoroughly characterized. Both complexes form 1D coordination chains by bonding of Co(nia)2(H2O)2 units through succinate or fumarate ligands while these chains are further linked through hydrogen bonds to 3D supramolecular networks. The intermolecular interactions of both complexes are quantified using Hirshfeld surface analysis and their infrared spectra, electronic spectra and static magnetic properties are confronted with DFT and state-of-the-art ab-initio calculations. Dynamic magnetic measurements show that both complexes exhibit single-ion magnet behaviour induced by a magnetic field. Since they possess very similar chemical structure, differing only in the rigidity of the bridge between the magnetic centres, this chemical feature is put into context with changes in their magnetic relaxation.
Collapse
|
10
|
Srinivasan A, Musgrave RA, Rouzières M, Clérac R, McGrady JE, Hillard EA. A linear metal-metal bonded tri-iron single-molecule magnet. Chem Commun (Camb) 2021; 57:13357-13360. [PMID: 34821230 DOI: 10.1039/d1cc05043e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear trinuclear complex cation [Fe3(DpyF)4]2+ was prepared as [Fe3(DpyF)4](BF4)2·2CH3CN. With large Fe-Fe distances of 2.78 Å, this complex demonstrates intramolecular ferromagnetic coupling between the anisotropic FeII centers (J/kB = +20.9(5) K) giving an ST = 6 ground state and exhibits single-molecule magnet properties.
Collapse
Affiliation(s)
- Anandi Srinivasan
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Rebecca A Musgrave
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - John E McGrady
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Elizabeth A Hillard
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| |
Collapse
|
11
|
Kanno T, Nakabayashi K, Imoto K, Ohkoshi S. Manganese‐Octacyanidoniobate‐Based Ferrimagnet Possessing Bridging Ligands with Disulfide Bonds. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takefumi Kanno
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Koji Nakabayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kenta Imoto
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Shin‐ichi Ohkoshi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|
12
|
Heimermann A, van Wüllen C. Analyzing Anisotropic Exchange in a Pentanuclear Os 2 Ni 3 Complex. Chemistry 2021; 27:15147-15157. [PMID: 34288164 PMCID: PMC8597145 DOI: 10.1002/chem.202101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/12/2022]
Abstract
Spin Hamiltonian parameters of a pentanuclear Os2 III Ni3 II cyanometallate complex are derived from ab initio wave function based calculations, namely valence-type configuration interaction calculations with a complete active space including spin-orbit interaction (CASOCI) in a single-step procedure. While fits of experimental data performed so far could reproduce the data but the resulting parameters were not satisfactory, the parameters derived in the present work reproduce experimental data and at the same time have a reasonable size. The one-centre parameters (local g matrices and single-ion zero field splitting tensors) are within an expected range, the anisotropic exchange parameters obtained in this work for an Os-Ni pair are not exceedingly large but determine the low-T part of the experimental χT curve. Exchange interactions (both isotropic and anisotropic) obtained from CASOCI have to be scaled by a factor of 2.5 to obtain agreement with experiment, a known deficiency of such types of calculation. After scaling the parameters, the isotropic Os-Ni exchange coupling constant is J = - 4 . 2 cm-1 and the D parameter of the (nearly axial) anisotropic Os-Ni exchange is D = J ∥ - J ⊥ = 18 . 8 c m -1 , so anisotropic exchange is larger in absolute size than isotropic exchange. The negative value of the isotropic J (indicating antiferromagnetic coupling) seemingly contradicts the large-temperature behaviour of the temperature dependent susceptibility curve, but this is caused by the negative g value of the Os centres. This negative g value is a universal feature of a pseudo-octahedral coordination with t 2 g 5 configuration and strong spin-orbit interaction. Knowing the size of these exchange interactions is important because Os(CN)6 3 - is a versatile building block for the synthesis of 5 d / 3 d magnetic materials.
Collapse
Affiliation(s)
- Andreas Heimermann
- Fachbereich Chemie and Forschungszentrum OPTIMAS Technische UniversitätKaiserslautern67663KaiserslauternGermany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS Technische UniversitätKaiserslautern67663KaiserslauternGermany
| |
Collapse
|
13
|
Li Y, Sun X, Chen P, Liu HT, Li J, Liu D, Li D, Dou J, Tian H. Modulating the relaxation dynamics of the Na 2Mn 3 system via an auxiliary anion change. Dalton Trans 2021; 50:14774-14781. [PMID: 34591053 DOI: 10.1039/d1dt01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports two closely related heteropentanuclear manganese complexes, namely, {Na2Mn3(opch)3(μ4-O)(μ2-N3) (μ2-AcO)(μ2-MeO)}·6CH3OH·0.5H2O (1) and {Na2Mn3(opch)3(μ4-O)(μ2-N3)2(μ2-AcO)}·2.5CH3OH·2H2O (2), where H2opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide. Single-crystal X-ray diffraction analysis reveals that the trigonal bipyramidal skeletons in both complexes are comparable, where a perfect triangular Mn3 motif occupies the equatorial plane. Magnetic investigations suggest that overall antiferromagnetic coupling is present within the triangles of 1 and 2. However, their dynamic magnetic properties are drastically distinct. Indeed, complexes 1 and 2 show two kinds of dual slow magnetic relaxation processes that correspond to anisotropy barriers (Δ) of 9.2 cm-1 (11.4 cm-1 for 2) and 12.8 cm-1 (30.0 cm-1 for 2) for the low- and high-frequency domains, respectively. More importantly, a further comparative study of the structure and magnetism indicates that the coordination sphere of these two model complexes with the homologous hydrazone-based coordination sites undergoes an alteration from methoxide-O to azide-N upon a subtle change of the auxiliary anion accompanied by modulating octahedron geometries, leading to a further influence on different relaxation dynamics.
Collapse
Affiliation(s)
- Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
14
|
Kumar K, Stefanczyk O, Chilton NF, Nakabayashi K, Imoto K, Winpenny REP, Ohkoshi SI. Magnetic Properties and Second Harmonic Generation of Noncentrosymmetric Cyanido-Bridged Ln(III)-W(V) Assemblies. Inorg Chem 2021; 60:12009-12019. [PMID: 34318670 DOI: 10.1021/acs.inorgchem.1c01113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-dimensional zigzag cyanido-bridged coordination polymers have been prepared as a result of self-assembly of lanthanide(III) ions with octacyanidotungstate(V) anions in the presence of N,N-dimethylacetamide (dma). All compounds crystallized in noncentrosymmetric space group P21 with a molecular formula of [LnIII(dma)5][WV(CN)8] [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8), or Y (9)]. Magnetic studies revealed weak antiferromagnetic interactions through LnIII-NC-WV bridges and the formation of ferrimagnetically coupled chains at very low temperatures. Moreover, temperature dependencies of magnetic susceptibilities were fitted using the crystal field parameters for Ln(III) ions, determined by the ab initio calculations, yielding magnetic coupling constants in the range of -1 to -5 cm-1. The wide optical transparency of 1-9 has been determined using solid state absorption spectroscopy. Samples exhibited second harmonic (SH) generation properties with SH susceptibilities ranging from 4.7 × 10-12 to 9.4 × 10-11 esu due to the presence of nonlinear optical susceptibility tensor elements (χijk) χzxx, χzyy, χzzz, χzxy, χyyz, χyzx, χxyz, and χxzx, corresponding to space group P21. The determined values were also compared with the results of theoretical calculations and previous reports, indicating a potential relationship between the type of lanthanide ion and the SH intensity.
Collapse
Affiliation(s)
- Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Richard E P Winpenny
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Kawabata S, Nakabayashi K, Imoto K, Klimke S, Renz F, Ohkoshi SI. Second harmonic generation on chiral cyanido-bridged Fe II-Nb IV spin-crossover complexes. Dalton Trans 2021; 50:8524-8532. [PMID: 34075991 DOI: 10.1039/d1dt01324f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating chiral organic ligands into cyanido-bridged FeII-NbIV assemblies synthesized chiral spin-crossover complexes, FeII2[NbIV(CN)8](L)8·6H2O (L = R-, S-, or rac-1-(3-pyridyl)ethanol: R-FeNb, S-FeNb, or rac-FeNb). Rietveld analyses based on a racemic complex of rac-FeNb indicate that the chiral complexes have a cubic crystal structure in the I213 space group with a three-dimensional cyanido-bridged FeII-NbIV coordination network. All the complexes exhibit spin crossover between the high-spin (HS) and the low-spin (LS) FeII states without thermal hysteresis. Chiral complexes of R-FeNb and S-FeNb show second harmonic generation (SHG) due to their non-centrosymmetric structure. The I213 space group provides second-order susceptibility tensor elements of χxyz, χyzx, and χzxy, which contribute to SHG. The temperature-dependent second harmonic light intensity change is due to spin crossover between FeIIHS and FeIILS.
Collapse
Affiliation(s)
- Shintaro Kawabata
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Stephen Klimke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Ceglarska M, Böhme M, Neumann T, Plass W, Näther C, Rams M. Magnetic investigations of monocrystalline [Co(NCS) 2(L) 2] n: new insights into single-chain relaxations. Phys Chem Chem Phys 2021; 23:10281-10289. [PMID: 33903874 DOI: 10.1039/d1cp00719j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large single crystal of a compound from the family of coordination polymer [Co(NCS)2(L)2]n chains was synthesized and its magnetic properties are reported. [Co(NCS)2(4-(3-phenylpropyl)pyridine)2]n is ferromagnetic with Tc = 3.39 K. Single-ion ab initio calculations predict an almost Ising-type magnetic anisotropy and the direction of the magnetic easy-axis nearly along the Co-Npy bond of the apical pyridine-based co-ligand. Both predictions are confirmed by single-crystal magnetic measurements. The magnetic relaxation of the single crystal sample significantly differs from the powder sample data, and clearly shows the presence of two separate relaxation processes. The process dominant below 3.2 K demonstrates a single chain magnet (SCM) behaviour, with a crossover between single-wall and two-wall processes, in spite of the fact that the system is ferromagnetically ordered. The faster process that dominates just below Tc is attributed to spin waves. Micromagnetic Monte Carlo simulations of the investigated compound show that the dipolar field cancels for some chains located at the border between 3-dimensional domains. Such chains are responsible for the measured ac signal, and demonstrate the SCM behaviour. The quantitative analysis of the SCM relaxation time is supported by preparing and examining a corresponding diamagnetically diluted compound, [CoxCd1-x(NCS)2(4-(3-phenylpropyl)pyridine)2]n (x = 0.013), which behaves as a field-induced single-ion magnet. The relaxation pathways for single Co(ii) spins are determined to be Raman, direct, and quantum tunneling processes, which were included in an improved approach to describe the magnetic relaxation in the Co(ii)-based SCM compound.
Collapse
Affiliation(s)
- Magdalena Ceglarska
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Tristan Neumann
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| |
Collapse
|
17
|
Sun JS, Zhang RR, Zhou XQ, Li ZY, Wu DQ, Zhai B. Structure and magnetic properties of one carboxylate-bridged linear trinuclear [Ni3] and one paddle-wheel dinuclear [Cu2] cluster. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Cabrosi D, Cruz C, Paredes-García V, Alborés P. Anisotropic exchange interaction and field-induced SMM behaviour in a mixed valence {CoCo} complex. Dalton Trans 2021; 50:1402-1412. [PMID: 33433551 DOI: 10.1039/d0dt03075a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We are reporting the synthesis and structural characterization of a new hexanuclear Co(ii)/Co(iii) complex starting from a versatile pivalate cobalt precursor and the racemic mixture of a chelating Schiff base type ligand. The main [CoII4CoIII2(μ3-OH)2(μ-OR)2(μ-OR')2(μ-OR'')2]6+ core is unprecedented and exhibits an inversion center that affords only two unique Co(ii) sites. We performed DC and AC magnetic measurements and analysed them in terms of the anisotropic exchange of ground Kramers doublets at each Co(ii) site due to their unquenched angular orbital contribution to the magnetic moment. Quantum computations support the experimental data treatment. The interplay of dominant antiferromagnetic exchange, inversion symmetry and a non-collinear main quantization axis affords an exchange energy spectrum with mostly non-magnetic states. Nevertheless, field induced SMM behaviour is observed at 1500 Oe and below 3 K which might be explained by the relaxation of the first excited magnetic state (which is populated enough) through the next closest excited state. The Orbach and/or Raman mechanism could be operative from the experimental and quantum computed results.
Collapse
Affiliation(s)
- Daiana Cabrosi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile and Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile and Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
19
|
Wei H, Huang H, Gao W, Wang CL, Liu JP, Zhang XM. 2D/3D coordination polymers based on di-, tri-, tetranuclear and polymeric chain units with a tricarboxylate ligand: Structures, magnetic and luminescent properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Krylov D, Velkos G, Chen CH, Büchner B, Kostanyan A, Greber T, Avdoshenko SM, Popov AA. Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy 2S@C 82. Inorg Chem Front 2020; 7:3521-3532. [PMID: 33442482 PMCID: PMC7116581 DOI: 10.1039/d0qi00771d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy inter-actions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in C s and C 3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the C s isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in C s and C 3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity.
Collapse
Affiliation(s)
- Denis Krylov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany.,Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Chia-Hsiang Chen
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Aram Kostanyan
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Thomas Greber
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Stanislav M Avdoshenko
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| |
Collapse
|
21
|
Synthesis, crystal structure and magnetic properties of a pentanuclear Mn(III) cluster with 1,2,4-triazole based Schiff base ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Chen H, Sun L, Zhang J, Xiao Z, Ma P, Wang J, Zhang Y, Niu J. Magnetic field and dilution effects on the slow relaxation of {Er3} triangle-based arsenotungstate single-molecule magnets. Dalton Trans 2020; 49:12458-12465. [DOI: 10.1039/d0dt01831g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triangular {Er3} cluster containing POM exhibits field-induced two thermally activated relaxation processes. Whereas, the diamagnetic dilution sample indicates slow magnetic relaxation with the QTM being partially suppressed.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jinpeng Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Zikang Xiao
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| |
Collapse
|
23
|
Gransbury GK, Boulon ME, Mole RA, Gable RW, Moubaraki B, Murray KS, Sorace L, Soncini A, Boskovic C. Single-ion anisotropy and exchange coupling in cobalt(ii)-radical complexes: insights from magnetic and ab initio studies. Chem Sci 2019; 10:8855-8871. [PMID: 31803460 PMCID: PMC6853083 DOI: 10.1039/c9sc00914k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/27/2019] [Indexed: 01/18/2023] Open
Abstract
The concurrent effects of single-ion anisotropy and exchange interactions on the electronic structure and magnetization dynamics have been analyzed for a cobalt(ii)-semiquinonate complex. Analogs containing diamagnetic catecholate and tropolonate ligands were employed for comparison of the magnetic behavior and zinc congeners assisted with the spectroscopic characterization and assessment of intermolecular interactions in the cobalt(ii) compounds. Low temperature X-band (ν ≈ 9.4 GHz) and W-Band (ν ≈ 94 GHz) electron paramagnetic resonance spectroscopy and static and dynamic magnetic measurements have been used to elucidate the electronic structure of the high spin cobalt(ii) ion in [Co(Me3tpa)(Br4cat)] (1; Me3tpa = tris[(6-methyl-2-pyridyl)methyl]amine, Br4cat2- = tetrabromocatecholate) and [Co(Me3tpa)(trop)](PF6) (2(PF6); trop- = tropolonate), which show slow relaxation of the magnetization in applied field. The cobalt(ii)-semiquinonate exchange interaction in [Co(Me3tpa)(dbsq)](PF6)·tol (3(PF6)·tol; dbsq- = 3,5-di-tert-butylsemiquinonate, tol = toluene) has been determined using an anisotropic exchange Hamiltonian in conjunction with multistate restricted active space self-consistent field ab initio modeling and wavefunction analysis, with comparison to magnetic and inelastic neutron scattering data. Our results demonstrate dominant ferromagnetic exchange for 3+ that is of similar magnitude to the anisotropy parameters of the cobalt(ii) ion and contains a significant contribution from spin-orbit coupling. The nature of the exchange coupling between octahedral high spin cobalt(ii) and semiquinonate ligands is a longstanding question; answering this question for the specific case of 3+ has confirmed the considerable sensitivity of the exchange to the molecular structure. The methodology employed will be generally applicable for elucidating exchange coupling between orbitally-degenerate metal ions and radical ligands and relevant to the development of bistable molecules and their integration into devices.
Collapse
Affiliation(s)
- Gemma K Gransbury
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Marie-Emmanuelle Boulon
- UdR INSTM , Department of Chemistry "U. Schiff" , University of Florence , 50019 Sesto Fiorentino (FI) , Italy
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Robert W Gable
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Boujemaa Moubaraki
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Keith S Murray
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Lorenzo Sorace
- UdR INSTM , Department of Chemistry "U. Schiff" , University of Florence , 50019 Sesto Fiorentino (FI) , Italy
| | - Alessandro Soncini
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Colette Boskovic
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| |
Collapse
|
24
|
Higgins RF, Livesay BN, Ozumerzifon TJ, Joyce JP, Rappé AK, Shores MP. A family of related Co(II) terpyridine compounds exhibiting field induced single-molecule magnet properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Ohno T, Nakabayashi K, Imoto K, Komine M, Chorazy S, Ohkoshi SI. Chiral cyanido-bridged Mn–Nb magnets including halogen-bonds. CrystEngComm 2018. [DOI: 10.1039/c8ce01353e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral and achiral three-dimensional cyanido-bridged metal assemblies with 4-halopyridine, [MnII(4-Xpy)4]2[NbIV(CN)8] (X = I, 1; X = Cl, 2), are prepared. 1 and 2 show ferrimagnetism with TC of 22 and 28 K, respectively. Chiral compound 1 exhibits second-harmonic generation.
Collapse
Affiliation(s)
- Takuro Ohno
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Koji Nakabayashi
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Kenta Imoto
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Masaya Komine
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Szymon Chorazy
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Kraków
- Poland
| | - Shin-ichi Ohkoshi
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
26
|
Zhang X, Xu N, Shi W, Wang BW, Cheng P. The influence of an external magnetic field and magnetic-site dilution on the magnetization dynamics of a coordination network based on ferromagnetic coupled dinuclear dysprosium(iii) units. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00663b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2D coordination network was synthesized and structurally characterized. Ferromagnetic interactions, multi-process slow relaxation of magnetization and hysteresis loops were also studied.
Collapse
Affiliation(s)
- Xuejing Zhang
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- China
| | - Na Xu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- China
| | - Wei Shi
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Peng Cheng
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
27
|
Wu Y, Han JM, Hong M, Krzyaniak MD, Blackburn AK, Fernando IR, Cao DD, Wasielewski MR, Stoddart JF. X-Shaped Oligomeric Pyromellitimide Polyradicals. J Am Chem Soc 2017; 140:515-523. [PMID: 29215275 DOI: 10.1021/jacs.7b12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synthesis of stable organic polyradicals is important for the development of magnetic materials. Herein we report the synthesis, isolation, and characterization of a series of X-shaped pyromellitimide (PI) oligomers (Xn-R, n = 2-4, R = Hex or Ph) linked together by single C-C bonds between their benzenoid cores. We hypothesize that these oligomers might form high-spin states in their reduced forms because of the nearly orthogonal conformations adopted by their PI units. 1H and 13C nuclear magnetic resonance (NMR) spectroscopies confirmed the isolation of the dimeric, trimeric, and tetrameric homologues. X-ray crystallography shows that X2-Ph crystallizes into a densely packed superstructure, despite the criss-crossed conformations adopted by the molecules. Electrochemical experiments, carried out on the oligomers Xn-Hex, reveal that the reductions of the PI units occur at multiple distinct potentials, highlighting the weak electronic coupling between the adjacent redox centers. Finally, the chemically generated radical anion and polyanion states, Xn-Hex•- and Xn-Hexn(•-), respectively, were probed extensively by UV-vis-NIR absorption, EPR, and electron nuclear double resonance (ENDOR) spectroscopies. The ENDOR spectra of the radical monoanions Xn-Hex•- reveal that the unpaired electron is largely localized on a single PI unit. Further reductions of Xn-Hex•- yield EPR signals (in frozen solutions) that can be assigned to spin-spin interactions in X2-Hex2(•-), X3-Hex3(•-), and X4-Hex4(•-). Taken together, these findings demonstrate that directly linking the benzene rings of PIs with a single C-C bond is a viable method for generating stabilized high-spin organic anionic polyradicals.
Collapse
Affiliation(s)
- Yilei Wu
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Ji-Min Han
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Michael Hong
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Anthea K Blackburn
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Isurika R Fernando
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Dennis D Cao
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Department of Chemistry, ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, and §Institute for Sustainability and Energy at Northwestern, Northwestern University , Evanston Illinois 60208-3113, United States
| |
Collapse
|
28
|
Singh SK, Vignesh KR, Archana V, Rajaraman G. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {Re(IV)-M(II)} (M = Mn, Fe, Co, Ni and Cu) single chain magnets. Dalton Trans 2017; 45:8201-14. [PMID: 27096553 DOI: 10.1039/c5dt04928h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional calculations have been performed on a series of {Re(IV)-M(II)} (M = Mn(), Fe(), Co(), Ni(), Cu()) complexes to compute the magnetic exchange interaction between the Re(IV) and M(II) ions, and understand the mechanism of magnetic coupling in this series. DFT calculations yield J values of -5.54 cm(-1), +0.44 cm(-1), +10.5 cm(-1), +4.54 cm(-1) and +19 cm(-1) for complexes respectively, and these estimates are in general agreement with the experimental reports. Using molecular orbital (MO) and overlap integral analysis, we have established a mechanism of coupling for a {3d-5d} pair and the proposed mechanism rationalises both the sign and the magnitude of J values observed in this series. Our proposed mechanism of coupling has five contributing factors: (i) (Re)dyz-dyz(3d) overlap, (ii) (Re)dxz-dxz(3d) overlap, (iii) (Re)dxy-dxy(3d) overlap, (iv) (Re)eg-t2g(3d) overlaps and (v) (Re)eg-eg(3d) overlaps. Here, the first two terms are found to contribute to the antiferromagnetic part of the exchange, while the other three contribute to the ferromagnetic part. The last two terms correspond to the cross-interactions and also contribute to the ferromagnetic part of the exchange. A record high ferromagnetic J value observed for the {Re(IV)-Cu(II)} pair in complex is found to be due to a significant cross interaction between the dz(2) orbital of the Re(IV) ion and the dx(2)-y(2) orbital of the Cu(ii) ion. Magneto-structural correlations are developed for Re-C and M-N bond lengths and Re-C-N and M-N-C bond angles. Among the developed correlations, the M-N-C bond angle is found to be the most sensitive parameter which influences the sign and strength of J values in this series. The J values are found to be more positive (or less negative) as the angle increases, indicating stronger ferromagnetic coupling at linear M-N-C angles. Apart from the magnetic exchange interaction, we have also estimated the magnetic anisotropy of [ReCl4(CN)2](2-) and [(DMF)4(CN)M(II)(CN)] (M(II)-Fe(II), Co(II) and Ni(II)) units using the state-of-the-art ab initio CASSCF/PT2/RASSI-SO/SINGLE_ANISO approach. The calculated D and E values for these building units are found to be in agreement with the available experimental results. Particularly a large positive D computed for the [ReCl4(CN)2](2-) unit was found to arise from dxz/dyz → dxy excitations corresponding to the low-lying doublet states. Similarly, a very large positive D value computed for Fe(II) and Co(II) units are also rationalised based on the corresponding ground state electronic configurations computed. The non-collinearity of the Re(IV) ion and the M(II) ion axial anisotropy (DZZ) axis are found to diminish the anisotropy of the building unit, leading to the observation of moderate relaxation barriers for these molecules.
Collapse
Affiliation(s)
- Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Kuduva R Vignesh
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Velloth Archana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
29
|
Aldoshin SM, Korchagin DV, Palii AV, Tsukerblat BS. Some new trends in the design of single molecule magnets. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this review we briefly discuss some new trends in the design of single molecule magnets based on transition (3d, 4d, 5d) and rare-earth (4f) metal ions. Within this broad theme the emphasis of the present review is placed on the molecules which exhibit strong magnetic anisotropy originating from the unquenched orbital angular momenta in the ground orbitally degenerate (or quasi-degenerate) states. Along with the general concepts we consider selected examples of the systems comprising orbitally-degenerate metal ions and demonstrate how one can benefit from strong single-ion anisotropy arising from the first-order orbital angular momentum. The role of crystal fields, spin-orbit coupling and structural factors is discussed. Some observation stemming from the analysis of the isotropic exchange interactions, magnetic anisotropy and strongly anisotropic orbitally-dependent superexchange are summarized as guiding rules for the controlled design of single molecule magnets exhibiting high barriers for magnetization reversal and, consequently, high blocking temperatures.
Collapse
Affiliation(s)
| | | | - Andrew V. Palii
- Institute of Problems of Chemical Physics, Chernogolovka, Russia
- Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Moldova
| | - Boris S. Tsukerblat
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
30
|
Yang L, Li J, Pu TC, Kong M, Song Y. Metal-ion induced ferromagnetic polarization in a mixed-spin system. Dalton Trans 2017; 46:6670-6676. [PMID: 28484761 DOI: 10.1039/c7dt00753a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new 3d-3d heterometallic complexes, [CuMII(hmb)6(OH)]ClO4·H2O (M = Zn (1), Ni (2) and Co (3)) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde), have been synthesized. Structural analysis reveals that the three complexes are isostructural. Three CuII ions are in a perfect trigonal geometrical frustration and form a tetrahedral frustrated system with the introduced fourth ion ZnII/NiII/CoII. Magnetic studies indicate the antiferromagnetic coupling between metal ions in all 1, 2 and 3. Due to the geometrical frustration, spin-frustrated magnetism is also a typical feature of 1-3 and the magnetostructural correlation is far more complicated than their structures. The detailed magnetic investigation found that the ground state spin of 2 cannot be simply determined by the antiferromagnetically linear arrangement of spins, because the strong antiferromagnetic coupling between CuII and NiII ions quenches the spin frustration and ferromagnetically polarizes the spins of the [Cu] unit. Contrarily, the antiferromagnetic coupling between CuII and CoII ions is not strong enough in 3, so there is no similar behaviour compared to 2.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
31
|
Baldoví J, Cardona-Serra S, Gaita-Ariño A, Coronado E. Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Mukherjee S, Lu J, Velmurugan G, Singh S, Rajaraman G, Tang J, Ghosh SK. Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln2 (Ln = Dy and Gd) Complexes. Inorg Chem 2016; 55:11283-11298. [DOI: 10.1021/acs.inorgchem.6b01863] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumya Mukherjee
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jingjing Lu
- State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Gunasekaran Velmurugan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Shweta Singh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Sujit K. Ghosh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
33
|
Zhang Y, Liu H. Synthesis, characterization and X-ray crystal structures of trinuclear zinc(II) and cadmium(II) complexes derived from an oxovanadium(IV) complex ligand. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Zhou Z, Zhang WQ, Bian RR, Lan CX, Gu W, Liu X, Liao SY. New Ni(II) and Co(II) coordination compounds construction from the ditopic 1,2,3-triazol-based aromatic heterocyclic polycarboxylic ligand. RUSS J COORD CHEM+ 2016. [DOI: 10.1134/s1070328416060099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Aldoshin SM, Sanina NA, Palii AV, Tsukerblat BS. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes. Inorg Chem 2016; 55:3566-75. [PMID: 26974224 DOI: 10.1021/acs.inorgchem.6b00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.
Collapse
Affiliation(s)
- Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences , Chernogolovka, Moscow Region, Russia
| | - Nataliya A Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences , Chernogolovka, Moscow Region, Russia
| | - Andrew V Palii
- Institute of Problems of Chemical Physics, Russian Academy of Sciences , Chernogolovka, Moscow Region, Russia.,Institute of Applied Physics, Academy of Sciences of Moldova , Chişinău, Moldova
| | - Boris S Tsukerblat
- Department of Chemistry, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
36
|
Cao M, Liu WT, Shi L, Zhao DH, Jiang LC. Synthesis and characterization of two cobalt(II) complexes based on 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Man−Li Cao
- Department of Chemistry, Guangdong University of Education, Guangzhou, China
| | - Wen-Ting Liu
- Department of Chemistry, Guangdong University of Education, Guangzhou, China
| | - Lei Shi
- Department of Chemistry, Guangdong University of Education, Guangzhou, China
| | - Dan-Hua Zhao
- Department of Chemistry, Guangdong University of Education, Guangzhou, China
| | - Liao-Chuan Jiang
- Department of Chemistry, Guangdong University of Education, Guangzhou, China
| |
Collapse
|
37
|
|
38
|
Duan Y, Clemente-Juan JM, Giménez-Saiz C, Coronado E. Cobalt Clusters with Cubane-Type Topologies Based on Trivacant Polyoxometalate Ligands. Inorg Chem 2016; 55:925-38. [DOI: 10.1021/acs.inorgchem.5b02532] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Duan
- Instituto de Ciencia Molecular
(ICMol), Parque Científico, Universidad de Valencia, Valencia, Spain
| | - Juan M. Clemente-Juan
- Instituto de Ciencia Molecular
(ICMol), Parque Científico, Universidad de Valencia, Valencia, Spain
| | - Carlos Giménez-Saiz
- Instituto de Ciencia Molecular
(ICMol), Parque Científico, Universidad de Valencia, Valencia, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular
(ICMol), Parque Científico, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
39
|
Schmitz S, Monakhov KY, van Leusen J, Izarova N, Heß V, Kögerler P. {CoII/III5} horseshoe and {NiII4} lacunary cubane coordination clusters: the isobutyrate/N-butyldiethanolamine reaction system. RSC Adv 2016. [DOI: 10.1039/c6ra19232g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combination of carboxylate and diethanolamine-type ligands direct the formation of unusual discrete {NiII4} and {CoII/III5} structures under otherwise identical reaction conditions.
Collapse
Affiliation(s)
- Sebastian Schmitz
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Jan van Leusen
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Natalya V. Izarova
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6)
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - Volkmar Heß
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6)
| | - Paul Kögerler
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6)
| |
Collapse
|
40
|
Gumbau-Brisa R, Hayward JJ, Wallis JD, Rawson JM, Pilkington M. Structural insights into the coordination chemistry and reactivity of a 3,3′-bis-imine-2,2′-bipyridine ligand. CrystEngComm 2016. [DOI: 10.1039/c5ce02349a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kuang WW, Zhu LL, Xu Y, Yang PP. A tetranuclear holmium compound exhibiting single molecule magnet behavior. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Two double end-on cyanato-bridged dinuclear manganese(II) complexes exhibiting abnormal magnetic coupling for the Mn(II)–N–Mn(II) linkage. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9970-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Alonso PJ, Martínez JI. Magnetic properties of a Kramers doublet. An univocal bridge between experimental results and theoretical predictions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 255:1-14. [PMID: 25879696 DOI: 10.1016/j.jmr.2015.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
The magnetic response of a Kramers doublet is analyzed in a general case taking into account only the formal properties derived from time reversal operation. It leads to a definition of a matrix G (gyromagnetic matrix) whose expression depends on the chosen reference frame and on the Kramers conjugate basis used to describe the physical system. It is shown that there exists a reference frame and a suitable Kramers conjugate basis that gives a diagonal form for the G-matrix with all non-null elements having the same sign. A detailed procedure for obtaining this canonical expression of G is presented when the electronic structure of the KD is known regardless the level of the used theory. This procedure provides a univocal way to compare the theoretical predictions with the experimental results obtained from a complete set of magnetic experiments. In this way the problems arising from ambiguities in the g-tensor definition are overcome. This procedure is extended to find a spin-Hamiltonian suitable for describing the magnetic behavior of a pair of weakly coupled Kramers systems in the multispin scheme when the interaction between the two moieties as well as the individual Zeeman interaction are small enough as compared with ligand field splitting. Explicit relations between the physical interaction and the parameters of such a spin-Hamiltonian are also obtained.
Collapse
Affiliation(s)
- P J Alonso
- Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas), Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - J I Martínez
- Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas), Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
44
|
|
45
|
Dong D, Li Z, Yu N, Yang Z, Yang Q, Wu Y, Liu D. Synthesis, structures, and magnetic properties of a cyano-bridged Fe(III)2Fe(II) chain with long-range antiferromagnetic ordering. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Rudowicz C, Karbowiak M. Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Abstract
Historical developments, trends, pitfalls and strategies in improving f-element single molecule magnets are described.
Collapse
Affiliation(s)
| | - Joris van Slageren
- Institut für Physikalische Chemie
- Universität Stuttgart
- D-70569 Stuttgart
- Germany
| |
Collapse
|
48
|
Jiao YQ, Qin C, Zang HY, Chen WC, Wang CG, Zheng TT, Shao KZ, Su ZM. Assembly of organic–inorganic hybrid materials constructed from polyoxometalate and metal–1,2,4-triazole units: synthesis, structures, magnetic, electrochemical and photocatalytic properties. CrystEngComm 2015. [DOI: 10.1039/c4ce02007c] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A family of organic–inorganic hybrids built by Keggin/Dawson POMs with metal–1,2,4-triazole units has been synthesized through modulating the pH value.
Collapse
Affiliation(s)
- Yan-Qing Jiao
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Chao Qin
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Hong-Ying Zang
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Wei-Chao Chen
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Chun-Gang Wang
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Tian-Tian Zheng
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Kui-Zhan Shao
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024, PR China
| |
Collapse
|
49
|
Abstract
This review highlights fundamental concepts and synthetic strategies of SMMs and selected examples of 3d, 4f, 5f and mixed 3d–4f, 4d–5d and 3d–5f based SMMs are discussed.
Collapse
Affiliation(s)
| | | | - Sanjit Konar
- Department of Chemistry
- IISER Bhopal
- Bhopal 462066
- India
| |
Collapse
|
50
|
Nocton G, Lukens WW, Booth CH, Rozenel SS, Medling SA, Maron L, Andersen RA. Reversible sigma C-C bond formation between phenanthroline ligands activated by (C5Me5)2Yb. J Am Chem Soc 2014; 136:8626-41. [PMID: 24852897 DOI: 10.1021/ja502271q] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2'-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f(13), and (phen(•-) ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009 , 131 , 6480 ; J. Am. Chem. Soc 2010 , 132 , 17537 ). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy(•-) has only one π*1 orbital of b1 symmetry of accessible energy, but phen(•-) has two π* orbitals of b1 and a2 symmetry that are energetically accessible. The carbon pπ-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp*2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180-190 °C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer-monomer equilibrium in which ΔG is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature (1)H NMR spectroscopy.
Collapse
Affiliation(s)
- Grégory Nocton
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique , Palaiseau, France
| | | | | | | | | | | | | |
Collapse
|