1
|
Sukma A, Anwar H, Ikhsanudin A. Effect of Rhizopus oryzae fermentation on proximate composition, anti-nutrient contents, and functional properties of banana peel flour. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present work aimed to evaluate the effect of fermentation by Rhizopus oryzae on the proximate composition, anti-nutrient contents, and functional properties of banana peel flour using the solid-state fermentation method in a tray bioreactor at 30°C for 96 h. Throughout fermentation, samples were obtained at different times (0/NF, 24, 48, 72, and 96 h), and analysed using standard procedures to determine the proximate composition, anti-nutrient contents, and functional properties. Based on the results, there were significant differences observed (p < 0.05). Carbohydrate content decreased by 3.35%, while the crude protein, fat, ash, and crude fibre contents increased by 11.12, 2.43, 10.99, and 3.50%, respectively. Hydrogen cyanide, saponin, oxalate, and phytate contents decreased by 42.59, 25, 23.83, and 43.82%, respectively. Water absorption capacity (WAC) and the water solubility index (WSI) increased by 3.94 and 37.14%, respectively, while oil absorption capacity (OAC) decreased by 4.48%. These results showed that the fermentation of banana peel flour by R. oryzae has potential benefits for the food industry due to its effect on chemical composition and functional properties.
Collapse
|
2
|
Sarai N, Levin BJ, Roberts JM, Katsoulis DE, Arnold FH. Biocatalytic Transformations of Silicon-the Other Group 14 Element. ACS CENTRAL SCIENCE 2021; 7:944-953. [PMID: 34235255 PMCID: PMC8227617 DOI: 10.1021/acscentsci.1c00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 05/30/2023]
Abstract
Significant inroads have been made using biocatalysts to perform new-to-nature reactions with high selectivity and efficiency. Meanwhile, advances in organosilicon chemistry have led to rich sets of reactions holding great synthetic value. Merging biocatalysis and silicon chemistry could yield new methods for the preparation of valuable organosilicon molecules as well as the degradation and valorization of undesired ones. Despite silicon's importance in the biosphere for its role in plant and diatom construction, it is not known to be incorporated into any primary or secondary metabolites. Enzymes have been found that act on silicon-containing molecules, but only a few are known to act directly on silicon centers. Protein engineering and evolution has and could continue to enable enzymes to catalyze useful organosilicon transformations, complementing and expanding upon current synthetic methods. The role of silicon in biology and the enzymes that act on silicon-containing molecules are reviewed to set the stage for a discussion of where biocatalysis and organosilicon chemistry may intersect.
Collapse
Affiliation(s)
- Nicholas
S. Sarai
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Benjamin J. Levin
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John M. Roberts
- Dow
Inc., Core R&D, 633 Washington Street, Midland, Michigan 48667, United
States
| | - Dimitris E. Katsoulis
- Dow
Silicones Corporation, 2200 West Salzburg Road, Auburn, Michigan 48611, United
States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Singh G, Singh J, Singh A, Singh J, Kumar M, Gupta K, Chhibber S. Synthesis, characterization and antibacterial studies of schiff based 1,2,3-triazole bridged silatranes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Abstract
The application of biocatalytic or chemoenzymatic techniques in silicon chemistry serves two roles: it provides a greater understanding of the processing of silicon species by natural systems, such as plants, diatoms, and sponges, as well opening up avenues to green methodologies in the field. In the latter case, biocatalytic approaches have been applied to the synthesis of small-molecule systems and polymeric materials. Often these biocatalytic approaches allow access to molecular structures under mild conditions and, in some cases, molecular structures that are not accessible through traditional chemical methodologies. A review of recent advances in the applications of biocatalysis in silicon chemistry is presented.
Collapse
Affiliation(s)
- Mark B Frampton
- School of Biosciences, Loyalist College, 376 Wallbridge-Loyalist Road, Belleville, ON, K89 5B9, Canada
| | - Paul M Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
6
|
Affiliation(s)
- Christoph Rücker
- Institute for Sustainable and Environmental Chemistry, Leuphana University Lüneburg , Scharnhorststrasse 1, D-21335 Lüneburg, Germany
| | | |
Collapse
|
7
|
Ki MR, Jang EK, Pack SP. Hypothetical cathepsin-like protein from Nematostella vectensis and its silicatein-like cathepsin mutant for biosilica production. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
|
9
|
Abstract
In the past decade, the capture of anthropic carbonic dioxide and its storage or transformation have emerged as major tasks to achieve, in order to control the increasing atmospheric temperature of our planet. One possibility rests on the use of carbonic anhydrase enzymes, which have been long known to accelerate the hydration of neutral aqueous CO2 molecules to ionic bicarbonate species. In this paper, the principle underlying the use of these enzymes is summarized. Their main characteristics, including their structure and catalysis kinetics, are presented. A special section is next devoted to the main types of CO2 capture reactors under development, to possibly use these enzymes industrially. Finally, the possible application of carbonic anhydrases to directly store the captured CO2 as inert solid carbonates deserves a review presented in a final section.
Collapse
Affiliation(s)
- Alain C. Pierre
- Institut de Recherches sur la Catalyse et L’environnement de Lyon, Université Claude Bernard Lyon 1 CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
10
|
Palmeira DJ, Abreu JC, Andrade LH. Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols. Molecules 2011; 16:9697-713. [PMID: 22113578 PMCID: PMC6264554 DOI: 10.3390/molecules16119697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/28/2011] [Accepted: 11/17/2011] [Indexed: 11/16/2022] Open
Abstract
Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols through a transesterification reaction was studied. The optimal conditions found for the kinetic resolution of m- and p-aryltrimethylsilyl chiral alcohols, led to excellent results, high conversions (c = 50%), high enantiomeric ratios (E > 200) and enantiomeric excesses for the remaining (S)-alcohol and (R)-acetylated product (>99%). However, kinetic resolution of o-aryltrimethylsilyl chiral alcohols did not occur under the same conditions applied to the other isomers.
Collapse
Affiliation(s)
- Dayvson J Palmeira
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, n°. 748, SP 05508-900, São Paulo, Brazil.
| | | | | |
Collapse
|
11
|
|
12
|
|