1
|
Khakina E, Nikovskiy I, Spiridonov K, Novikov V, Antoshkina E, Dzhalilova D, Diatroptova M, Martyanova A, Rodionov A, Nelyubina YV. Hypoxia-activated dissociation of heteroleptic cobalt(III) complexes with functionalized 2,2'-bipyridines and a model anticancer drug esculetin. Dalton Trans 2025. [PMID: 39846889 DOI: 10.1039/d4dt02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)2(esc)]ClO4 with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and in situ NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)2(esc)]ClO4 with the Hammett constants of the substituents in 2,2'-bipy ligands. The latter, therefore, should be decorated with the most electron-withdrawing groups (unless they preclude the formation of a heteroleptic complex) to promote the drug release and increase the anticancer activity towards, e.g., human epidermoid carcinoma A431.These correlations can be transferred to other types of bi- or tetradentate ligands, thereby paving the way towards the molecular design of cobalt complexes as prodrugs for hypoxia-activated anticancer drug delivery with high therapeutic efficiency.
Collapse
Affiliation(s)
- Ekaterina Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
- National Research University Higher School of Economics, Faculty of Chemistry, 101000, Vavilova Str., 7, Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Kirill Spiridonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Valentin Novikov
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Evgenia Antoshkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Marina Diatroptova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Alina Martyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Ostrovityanova Str., 1, Moscow, Russia
| | - Alexey Rodionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| |
Collapse
|
2
|
Goodman DM, Ritter CU, Chen E, Tong KKH, Riisom M, Söhnel T, Jamieson SMF, Anderson RF, Brothers PJ, Ware DC, Hartinger CG. Masking the Bioactivity of Hydroxamic Acids by Coordination to Cobalt: Towards Bioreductive Anticancer Agents. Chemistry 2024; 30:e202401724. [PMID: 38853639 DOI: 10.1002/chem.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The clinical use of many potent anticancer agents is limited by their non-selective toxicity to healthy tissue. One of these examples is vorinostat (SAHA), a pan histone deacetylase inhibitor, which shows high cytotoxicity with limited discrimination for cancerous over healthy cells. In an attempt to improve tumor selectivity, we exploited the properties of cobalt(III) as a redox-active metal center through stabilization with cyclen and cyclam tetraazamacrocycles, masking the anticancer activity of SAHA and other hydroxamic acid derivatives to allow for the complex to reach the hypoxic microenvironment of the tumor. Biological assays demonstrated the desired low in vitro anticancer activity of the complexes, suggesting effective masking of the activity of SAHA. Once in the tumor, the bioactive moiety may be released through the reduction of the CoIII center. Investigations revealed long-term stability of the complexes, with cyclic voltammetry and chemical reduction experiments supporting the design hypothesis of SAHA release through the reduction of the CoIII prodrug. The results highlight the potential for further developing this complex class as novel anticancer agents by masking the high cytotoxicity of a given drug, however, the cellular uptake needs to be improved.
Collapse
Affiliation(s)
- David M Goodman
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Cornelia U Ritter
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin Chen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - David C Ware
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Palmeira-Mello MV, Caballero AB, Herrera-Ramírez P, Costa AR, Santana SS, Guedes GP, Caubet A, Batista AA, Gamez P, Lanznaster M. Cobalt(III)-py 2en systems as potential carriers of β-ketoester-based ligands. J Inorg Biochem 2023; 248:112345. [PMID: 37562318 DOI: 10.1016/j.jinorgbio.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Two cobalt(III) complexes containing different β-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of β-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the β-ketoester ligands upon Co(III)/Co(II) reduction.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil; Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Piedad Herrera-Ramírez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Savyo S Santana
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil..
| |
Collapse
|
4
|
Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Synthesis and Structural Investigation of Mononuclear Penta- and Hexa-Coordinated Co Complexes of 8-hydroxyquinoline Derived Ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Verma A, Bhuvanesh N, Reibenspies J, Tayade SB, Kumbhar AS, Bretosh K, Sutter JP, Sunkari SS. Structurally characterised new twisted conformer for cyclen, controlled by metal ion complexation as seen in NiII and CuII complexes with halides and pseudohalides. CrystEngComm 2022. [DOI: 10.1039/d1ce01096d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational flexibility of cyclen controlled by complexation with Ni(ii) and Cu(ii) as evidenced by structural studies.
Collapse
Affiliation(s)
- Abhineet Verma
- Department of Chemistry, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi-221005, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Nattamai Bhuvanesh
- X-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University, USA
| | - Joseph Reibenspies
- X-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University, USA
| | - Sakharam B. Tayade
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Avinash S. Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | | | | | - Sailaja S. Sunkari
- Department of Chemistry, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
7
|
Palmeira-Mello MV, Caballero AB, Ribeiro JM, de Souza-Fagundes EM, Gamez P, Lanznaster M. Evaluation of cobalt(III) complexes as potential hypoxia-responsive carriers of esculetin. J Inorg Biochem 2020; 211:111211. [PMID: 32805459 DOI: 10.1016/j.jinorgbio.2020.111211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023]
Abstract
Differentiation between hypoxic and normoxic tissues have been exploited for the development of selective chemotherapeutic agents. In this context, cobalt(III)-based coordination compounds have been designed and investigated as prospective hypoxia-responsive drug delivery systems. Three cobalt(III) complexes, namely [CoIII(esc)(py2en)]ClO4·(CH3OH)2 (1) [CoIII(esc)(TPA)]ClO4·3H2O (2) and [CoIII(bipy)2(esc)]ClO4·2.5H2O (3) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine, TPA = tris(2-pyridylmethyl)amine, bipy = 2,2'-bipyridine and esc = 6,7-dihydroxycoumarin or esculetin), were prepared and investigated as potential carriers of esculetin. The spectroscopic and electrochemical properties of 1-3 were investigated and compared. Reactions of the complexes with biologically relevant reducing agents, viz. ascorbic acid, cysteine and glutathione, were monitored spectroscopically for 24 h, in pH 6.2 and 7.4 PBS phosphate buffer saline (PBS) solutions at 37 °C, under air, argon and dioxygen atmospheres. Dissociation of esculetin was observed upon Co3+/Co2+ reduction preferably under hypoxic conditions, with more effective conversion rates for 3 > 2 > 1. These results illustrate the importance to modulate the Co3+/Co2+ redox potential through the donor-acceptor properties of the ancillary ligands. Complex 3 is cytotoxic against HCT-116 but not against HT-29 and HEK-293 cells. In addition, DNA-binding studies indicate that interactions of 1 and 3 with the biomolecule are electrostatic.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Juliana Martins Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.
| |
Collapse
|
8
|
Zarei L, Asadi Z, Samolova E, Dusek M. Preparation of a dimer from self-complementary of cobalt(III) complex with dissymmetric compartmental ligand and study of the interaction of the complex with DNA and BSA. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1694148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Leila Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Erika Samolova
- Institute of Physics, ASCR, Prague, Czech Republic
- Department of Inorganic Chemistry, Pavol Jozef Šafárik University in Košice, Slovak Republic Košice
| | - Michal Dusek
- Institute of Physics, ASCR, Prague, Czech Republic
| |
Collapse
|
9
|
de Mello MVP, Cebrián-Torrejón G, Pereira JR, dos Santos Moreira C, Gomes CBDSMR, da Rocha DR, de Souza Fagundes EM, Ferreira GB, Lanznaster M. Evaluation of 5-hydroxy-1,4-naphthoquinone-cobalt(III) complexes for hypoxia-activated drug delivery. J Inorg Biochem 2019; 199:110756. [DOI: 10.1016/j.jinorgbio.2019.110756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
|
10
|
King AP, Gellineau HA, MacMillan SN, Wilson JJ. Physical properties, ligand substitution reactions, and biological activity of Co(iii)-Schiff base complexes. Dalton Trans 2019; 48:5987-6002. [PMID: 30672949 PMCID: PMC6504617 DOI: 10.1039/c8dt04606a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four cobalt(iii) complexes of the general formula [Co(Schiff base)(L)2]+, where L is ammonia (NH3) or 3-fluorobenzylamine (3F-BnNH2), were synthesized. The complexes were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Their electrochemical properties, ligand substitution mechanisms, and ligand exchange rates in aqueous buffer were investigated. These physical properties were correlated to the cellular uptake and anticancer activities of the complexes. The complexes undergo sequential, dissociative ligand substitution, with the exchange rates depending heavily on the axial ligands. Eyring analyses revealed that the relative ligand exchange rates were largely impacted by differences in the entropy, rather than enthalpy, of activation for the complexes. Performing the substitution reactions in the presence of ascorbate led to a change in the reaction profile and kinetics, but no change in the final product. The cytotoxic activity of the complexes correlates with both the ligand exchange rate and reduction potential, with the more easily reduced and rapidly substituted complexes showing higher toxicity. These relationships may be valuable for the rational design of Co(iii) complexes as anticancer or antiviral prodrugs.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
11
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Co(III) complexes based on α-N-heterocyclic thiosemicarbazone ligands: DNA binding, DNA cleavage, and topoisomerase I/II inhibitory activity studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
King AP, Gellineau HA, Ahn JE, MacMillan SN, Wilson JJ. Bis(thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorg Chem 2017; 56:6609-6623. [PMID: 28509538 PMCID: PMC8113979 DOI: 10.1021/acs.inorgchem.7b00710] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nine bis(thiosemicarbazone) (BTSC) cobalt(III) complexes of the general formula [Co(BTSC)(L)2]NO3 were synthesized, where BTSC = diacetyl bis(thiosemicarbazone) (ATS), pyruvaldehyde bis(thiosemicarbazone) (PTS), or glyoxal bis(thiosemicarbazone) (GTS) and L = ammonia, imidazole (Im), or benzylamine (BnA). These compounds were characterized by multinuclear NMR spectroscopy, mass spectrometry, cyclic voltammetry, and X-ray crystallography. Their stability in phosphate-buffered saline was investigated and found to be highly dependent on the nature of the axial ligand, L. These studies revealed that complex stability is primarily dictated by the axial ligand following the sequence NH3 > Im > BnA. The cellular uptake and cytotoxicity in cancer cells were also determined. Both the cellular uptake and cytotoxicity were significantly affected by the nature of the equatorial BTSC. Complexes of ATS were taken up much more effectively than those of PTS and GTS. The cytotoxicity of the complexes was correlated to that of the free ligand. Cell uptake and cytotoxicity were also determined under hypoxic conditions. Only minor differences in the hypoxia activity and uptake were observed. Treatment of the cancer cells with the copper-depleting agent tetrathiomolybdate decreased the cytotoxic potency of the complexes, indicating that they may operate via a copper-dependent mechanism. These results provide a structure-activity relationship for this class of compounds, which may be applied for the rational design of new cobalt(III) anticancer agents.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Hendryck A. Gellineau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jung-Eun Ahn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
14
|
A Cancer Stem Cell Potent Cobalt(III)–Cyclam Complex Bearing Two Tolfenamic Acid Moieties. INORGANICS 2017. [DOI: 10.3390/inorganics5010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Green BP, Renfrew AK, Glenister A, Turner P, Hambley TW. The influence of the ancillary ligand on the potential of cobalt(iii) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans 2017; 46:15897-15907. [DOI: 10.1039/c7dt03645k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cobalt(iii) chaperone complexes can modulate the cytotoxicity and subcellular distribution of biologically active hydroxamic acids.
Collapse
Affiliation(s)
| | | | | | - Peter Turner
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | |
Collapse
|
16
|
Cressey PB, Eskandari A, Bruno PM, Lu C, Hemann MT, Suntharalingam K. The Potent Inhibitory Effect of a Naproxen-Appended Cobalt(III)-Cyclam Complex on Cancer Stem Cells. Chembiochem 2016; 17:1713-8. [PMID: 27377813 DOI: 10.1002/cbic.201600368] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/31/2022]
Abstract
We report the potency against cancer stem cells (CSCs) of a new cobalt(III)-cyclam complex (1) that bears the nonsteroidal anti-inflammatory drug, naproxen. The complex displays selective potency for breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Additionally, it inhibited the formation of three-dimensional tumour-like mammospheres, and reduced their viability to a greater extent than clinically used breast cancer drugs (vinorelbine, cisplatin and paclitaxel). The anti-mammosphere potency of 1 was enhanced under hypoxia-mimicking conditions. Detailed mechanistic studies revealed that DNA damage and cyclooxygenase-2 (COX-2) inhibition contribute to the cytotoxic mechanism of 1. To the best of our knowledge, 1 is the first cobalt-containing compound to show selective potency for CSCs over bulk cancer cells.
Collapse
Affiliation(s)
- Paul B Cressey
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Arvin Eskandari
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | - Chunxin Lu
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | | |
Collapse
|
17
|
Munteanu CR, Suntharalingam K. Advances in cobalt complexes as anticancer agents. Dalton Trans 2016; 44:13796-808. [PMID: 26148776 DOI: 10.1039/c5dt02101d] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.
Collapse
|
18
|
Vázquez M, Font-Bardia M, Martínez M. Kinetico-mechanistic studies of substitution reactions on cross-bridged cyclen Co(III) complexes with nucleosides and nucleotides. Dalton Trans 2015; 44:18643-55. [PMID: 26455445 DOI: 10.1039/c5dt01816a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetico-mechanistic studies on the substitution reactivity of the [Co{(μ-ET)cyclen}(H2O)2](3+) complex cation at pH values within the 6.0-7.0 range with biologically significant ligands have been carried out. The substitution processes have been found to occur exclusively on the mono-hydroxobridged [(Co{(μ-ET)cyclen}(H2O))2(μ-OH)](5+) species formed after equilibration of the cobalt complex in the relevant medium. The studies conducted on the substitution of the aqua/hydroxo ligands of this dinuclear species are indicative of a dominant role of outer-sphere complexation, involving hydrogen-bonding interactions. The values of the outer-sphere complex formation equilibrium constant are in line with the intervention of both the exiting aqua ligands and the NH groups at the encapsulating {(μ-ET)cyclen} ligand. These complexes result in the preferential formation of O- or N-bonded nucleotides depending on the structure of the base moiety of the ligand. Even the entry of the different donor bonded nucleotides is hampered by the hydrogen-bonding interaction with the dangling moiety of an already coordinated ligand. In general the overall substitution processes occur at a faster rate than those published for the fully alkylated encapsulating {(Me)2(μ-ET)cyclen} ligand derivative, as expected for the still available base-catalysing NH groups in the {(μ-ET)cyclen} ligand.
Collapse
Affiliation(s)
- Marta Vázquez
- Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | | | | |
Collapse
|
19
|
Karnthaler-Benbakka C, Groza D, Kryeziu K, Pichler V, Roller A, Berger W, Heffeter P, Kowol CR. Tumorspezifische, Hypoxie-basierte Aktivierung von EGFR-Inhibitoren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Karnthaler-Benbakka C, Groza D, Kryeziu K, Pichler V, Roller A, Berger W, Heffeter P, Kowol CR. Tumor-targeting of EGFR inhibitors by hypoxia-mediated activation. Angew Chem Int Ed Engl 2014; 53:12930-12935. [PMID: 25079700 DOI: 10.1002/anie.201403936] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 11/10/2022]
Abstract
The development of receptor tyrosine-kinase inhibitors (TKIs) was a major step forward in cancer treatment. However, the therapy with TKIs is limited by strong side effects and drug resistance. The aim of this study was the design of novel epidermal growth factor receptor (EGFR) inhibitors that are specifically activated in malignant tissue. Thus, a Co(III) -based prodrug strategy for the targeted release of an EGFR inhibitor triggered by hypoxia in the solid tumor was used. New inhibitors with chelating moieties were prepared and tested for their EGFR-inhibitory potential. The most promising candidate was coupled to Co(III) and the biological activity tested in cell culture. Indeed, hypoxic activation and subsequent EGFR inhibition was proven. Finally, the compound was tested in vivo, also revealing potent anticancer activity.
Collapse
Affiliation(s)
| | - Diana Groza
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria)
| | - Kushtrim Kryeziu
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria)
| | - Verena Pichler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna (Austria)
| | - Alexander Roller
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna (Austria)
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria); Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna (Austria)
| | - Petra Heffeter
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria); Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna (Austria)
| | - Christian R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna (Austria); Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna (Austria)
| |
Collapse
|
21
|
Chang JYC, Lu GL, Stevenson RJ, Brothers PJ, Clark GR, Botting KJ, Ferry DM, Tercel M, Wilson WR, Denny WA, Ware DC. Cross-Bridged Cyclen or Cyclam Co(III) Complexes Containing Cytotoxic Ligands as Hypoxia-Activated Prodrugs. Inorg Chem 2013; 52:7688-98. [DOI: 10.1021/ic4006967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John Yu-Chih Chang
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guo-Liang Lu
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ralph J. Stevenson
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - George R. Clark
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - K. Jane Botting
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Dianne M. Ferry
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Moana Tercel
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R. Wilson
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A. Denny
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C. Ware
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Alimi M, Allam A, Selkti M, Tomas A, Roussel P, Galardon E, Artaud I. Characterization of Cobalt(III) Hydroxamic Acid Complexes Based on a Tris(2-pyridylmethyl)amine Scaffold: Reactivity toward Cysteine Methyl Ester. Inorg Chem 2012; 51:9350-6. [DOI: 10.1021/ic301090t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mickael Alimi
- Laboratoire de Chimie et Biochimie
Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue
des Saints Pères, 75270 Paris Cedex 06, France
| | - Anas Allam
- Laboratoire de Chimie et Biochimie
Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue
des Saints Pères, 75270 Paris Cedex 06, France
| | - Mohamed Selkti
- Laboratoire de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue
de l’Observatoire, 75270 Paris Cedex 06, France
| | - Alain Tomas
- Laboratoire de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue
de l’Observatoire, 75270 Paris Cedex 06, France
| | - Pascal Roussel
- Unité de Catalyse et Chimie
du Solide, UMR 8012 CNRS, Ecole Nationale Supérieure de Chimie de Lille BP 90108, 59652 Villeneuve d’Ascq
Cedex, France
| | - Erwan Galardon
- Laboratoire de Chimie et Biochimie
Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue
des Saints Pères, 75270 Paris Cedex 06, France
| | - Isabelle Artaud
- Laboratoire de Chimie et Biochimie
Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue
des Saints Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
23
|
Kitamura M, Suzuki T, Abe R, Ueno T, Aoki S. 11B NMR sensing of d-block metal ions in vitro and in cells based on the carbon-boron bond cleavage of phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane). Inorg Chem 2011; 50:11568-80. [PMID: 22010826 DOI: 10.1021/ic201507q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noninvasive magnetic resonance imaging (MRI) including the "chemical shift imaging (CSI)" technique based on (1)H NMR signals is a powerful method for the in vivo imaging of intracellular molecules and for monitoring various biological events. However, it has the drawback of low resolution because of background signals from intrinsic water protons. On the other hand, it is assumed that the (11)B NMR signals which can be applied to a CSI technique have certain advantages, since boron is an ultratrace element in animal cells and tissues. In this manuscript, we report on the sensing of biologically indispensable d-block metal cations such as zinc, copper, iron, cobalt, manganese, and nickel based on (11)B NMR signals of simple phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane), L(6) and L(7), in aqueous solution at physiological pH. The results indicate that the carbon-boron bond of L(6) is cleaved upon the addition of Zn(2+) and the broad (11)B NMR signal of L(6) at 31 ppm is shifted upfield to 19 ppm, which corresponds to the signal of B(OH)(3). (1)H NMR, X-ray single crystal structure analysis, and UV absorption spectra also provide support for the carbon-boron bond cleavage of ZnL(6). Because the cellular uptake of L(6) was very small, a more cell-membrane permeable ligand containing the boronic acid ester L(7) was synthesized and investigated for the sensing of d-block metal ions using (11)B NMR. Data on (11)B NMR sensing of Zn(2+) in Jurkat T cells using L(7) is also presented.
Collapse
Affiliation(s)
- Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | | | | | | | | |
Collapse
|
24
|
Lu GL, Stevenson RJ, Chang JYC, Brothers PJ, Ware DC, Wilson WR, Denny WA, Tercel M. N-alkylated cyclen cobalt(III) complexes of 1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2,3-dihydro-1H-pyrrolo[3,2-f]quinolin-5-ol DNA alkylating agent as hypoxia-activated prodrugs. Bioorg Med Chem 2011; 19:4861-7. [DOI: 10.1016/j.bmc.2011.06.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/21/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
|
25
|
|