2
|
Mow R, Metzroth LJT, Dzara MJ, Russell-Parks GA, Johnson JC, Vardon DR, Pylypenko S, Vyas S, Gennett T, Braunecker WA. Phototriggered Desorption of Hydrogen, Ethylene, and Carbon Monoxide from a Cu(I)-Modified Covalent Organic Framework. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14801-14812. [PMID: 36110496 PMCID: PMC9465684 DOI: 10.1021/acs.jpcc.2c03194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Materials that are capable of adsorbing and desorbing gases near ambient conditions are highly sought after for many applications in gas storage and separations. While the physisorption of typical gases to high surface area covalent organic frameworks (COFs) occurs through relatively weak intermolecular forces, the tunability of framework materials makes them promising candidates for tailoring gas sorption enthalpies. The incorporation of open Cu(I) sites into framework materials is a proven strategy to increase gas uptake closer to ambient conditions for gases that are capable of π-back-bonding with Cu. Here, we report the synthesis of a Cu(I)-loaded COF with subnanometer pores and a three-dimensional network morphology, namely Cu(I)-COF-301. This study focused on the sorption mechanisms of hydrogen, ethylene, and carbon monoxide with this material under ultrahigh vacuum using temperature-programmed desorption and Kissinger analyses of variable ramp rate measurements. All three gases desorb near or above room temperature under these conditions, with activation energies of desorption (E des) calculated as approximately 29, 57, and 68 kJ/mol, for hydrogen, ethylene, and carbon monoxide, respectively. Despite these strong Cu(I)-gas interactions, this work demonstrated the ability to desorb each gas on-demand below its normal desorption temperature upon irradiation with ultraviolet (UV) light. While thermal imaging experiments indicate that bulk photothermal heating of the COF accounts for some of the photodriven desorption, density functional theory calculations reveal that binding enthalpies are systematically lowered in the COF-hydrogen matrix excited state initiated by UV irradiation, further contributing to gas desorption. This work represents a step toward the development of more practical ambient temperature storage and efficient regeneration of sorbents for applications with hydrogen and π-accepting gases through the use of external photostimuli.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Lucy J. T. Metzroth
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael J. Dzara
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek R. Vardon
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Svitlana Pylypenko
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Wang M, Murata K, Koike Y, Jonusauskas G, Furet A, Bassani DM, Saito D, Kato M, Shimoda Y, Miyata K, Onda K, Ishii K. A Red‐Light‐Driven CO‐Releasing Complex: Photoreactivities and Excited‐State Dynamics of Highly Distorted Tricarbonyl Rhenium Phthalocyanines. Chemistry 2022; 28:e202200716. [DOI: 10.1002/chem.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kei Murata
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yosuke Koike
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | | | - Amaury Furet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Dario M. Bassani
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Yuushi Shimoda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
4
|
Generation of a Hetero Spin Complex from Iron(II) Iodide with Redox Active Acenaphthene-1,2-Diimine. Molecules 2021; 26:molecules26102998. [PMID: 34070061 PMCID: PMC8158106 DOI: 10.3390/molecules26102998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
The reaction of the redox active 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) and iron(II) iodide in acetonitrile led to a new complex [(dpp-BIAN)FeIII2] (1). Molecular structure of 1 was determined by the single crystal X-ray diffraction analysis. The spin state of the iron cation in complex 1 at room temperature and the magnetic behavior of 1 in the temperature range of 2–300 K were studied using Mossbauer spectroscopy and magnetic susceptibility measurements, respectively. The neutral character of dpp-BIAN in 1 was confirmed by IR and UV spectroscopy. The electrochemistry of 1 was studied in solution and solid state using cyclic voltammetry. The generation of the radical anion form of the dpp-BIAN ligand upon reduction of 1 in a CH2Cl2 solution was monitored by EPR spectroscopy.
Collapse
|
5
|
Eriksson J, Antoni G, Långström B, Itsenko O. The development of 11C-carbonylation chemistry: A systematic view. Nucl Med Biol 2021; 92:115-137. [PMID: 32147168 DOI: 10.1016/j.nucmedbio.2020.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022]
Abstract
The prospects for using carbon-11 labelled compounds in molecular imaging has improved with the development of diverse synthesis methods, including 11C-carbonylations and refined techniques to handle [11C]carbon monoxide at a nanomole scale. Facilitating biological research and molecular imaging was the driving force when [11C]carbon monoxide was used in the first in vivo application with carbon-11 in human (1945) and when [11C]carbon monoxide was used for the first time as a chemical reagent in the synthesis of [11C]phosgene (1978). This review examines a rich plethora of labelled compounds synthesized from [11C]carbon monoxide, their chemistry and use in molecular imaging. While the strong development of the 11C-carbonylation chemistry has expanded the carbon-11 domain considerably, it could be argued that the number of 11C-carbonyl compounds entering biological investigations should be higher. The reason for this may partly be the lack of commercially available synthesis instruments designed for 11C-carbonylations. But as this review shows, novel and greatly simplified methods to handle [11C]carbon monoxide have been developed. The next important challenge is to make full use of these technologies and synthesis methods in PET research. When there is a PET-tracer that meets a more general need, the incentive to implement 11C-carbonylation protocols will increase.
Collapse
Affiliation(s)
- Jonas Eriksson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden.
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Oleksiy Itsenko
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Affiliation(s)
- Nidhi Sinha
- Atomic and Molecular Physics Lab, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Bobby Antony
- Atomic and Molecular Physics Lab, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
7
|
Abstract
A novel carbon-11 radiolabelling methodology for the synthesis of the dialkylcarbonate functional group has been developed. The method uses cyclotron-produced short-lived [11C]CO2 (half-life 20.4 min) directly from the cyclotron target in a one-pot synthesis. Alcohol in the presence of base trapped [11C]CO2 efficiently forming an [11C]alkylcarbonate intermediate that subsequently reacted with an alkylchloride producing the di-substituted [11C]carbonate (34% radiochemical yield, determined by radio-HPLC) in 5 minutes from the end of [11C]CO2 cyclotron delivery.
Collapse
|
8
|
Slanina T, Šebej P. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem Photobiol Sci 2018; 17:692-710. [DOI: 10.1039/c8pp00096d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational design of visible-light-activatable transition-metal-free CO-releasing molecules with an emphasis on mechanistic details of the CO release.
Collapse
Affiliation(s)
- Tomáš Slanina
- Institute for Organic Chemistry and Chemical Biology
- Goethe-University Frankfurt
- 60438 Frankfurt
- Germany
| | - Peter Šebej
- Research Centre for Toxic Compounds in the Environment
- Faculty of Science
- Masaryk University
- 625 00 Brno
- Czech Republic
| |
Collapse
|
9
|
Abstract
The potential of carbon monoxide to act as a therapeutic agent is now well-established. In this Perspective, we examine the growth of photoCORMs from their origins in the photophysics of metal carbonyls to the latest visible-light agents.
Collapse
Affiliation(s)
- Mark A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | - Joseph A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
12
|
Kuganathan N, Veal E, Green MLH, Green JC, Pascu SI. Exploring Pathways for Activation of Carbon Monoxide by Palladium Iminophosphines. Chempluschem 2013; 78:1413-1420. [DOI: 10.1002/cplu.201300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/06/2022]
|