1
|
Hu L, Gao X, Wang H, Song Y, Zhu Y, Tao Z, Yuan B, Hu R. Progress of Polymer Electrolytes Worked in Solid-State Lithium Batteries for Wide-Temperature Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312251. [PMID: 38461521 DOI: 10.1002/smll.202312251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Solid-state Li-ion batteries have emerged as the most promising next-generation energy storage systems, offering theoretical advantages such as superior safety and higher energy density. However, polymer-based solid-state Li-ion batteries face challenges across wide temperature ranges. The primary issue lies in the fact that most polymer electrolytes exhibit relatively low ionic conductivity at or below room temperature. This sensitivity to temperature variations poses challenges in operating solid-state lithium batteries at sub-zero temperatures. Moreover, elevated working temperatures lead to polymer shrinkage and deformation, ultimately resulting in battery failure. To address this challenge of polymer-based solid-state batteries, this review presents an overview of various promising polymer electrolyte systems. The review provides insights into the temperature-dependent physical and electrochemical properties of polymers, aiming to expand the temperature range of operation. The review also further summarizes modification strategies for polymer electrolytes suited to diverse temperatures. The final section summarizes the performance of various polymer-based solid-state batteries at different temperatures. Valuable insights and potential future research directions for designing wide-temperature polymer electrolytes are presented based on the differences in battery performance. This information is intended to inspire practical applications of wide-temperature polymer-based solid-state batteries.
Collapse
Affiliation(s)
- Long Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Xue Gao
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Hui Wang
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Yun Song
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yongli Zhu
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Zhijun Tao
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Bin Yuan
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
2
|
Wang X, Huang S, Peng Y, Min Y, Xu Q. Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries. CHEMSUSCHEM 2024; 17:e202301262. [PMID: 38415928 DOI: 10.1002/cssc.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs).
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- China Three Gorges Corporation Science and Technology Research Institute, Beijing, 101100, P. R. China
| | - Sipeng Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yiting Peng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
3
|
Borštnar P, Dražić G, Šala M, Lin CA, Lin SK, Spreitzer M, Daneu N. Transient Ruddlesden-Popper-Type Defects and Their Influence on Grain Growth and Properties of Lithium Lanthanum Titanate Solid Electrolyte. ACS NANO 2024; 18:10850-10862. [PMID: 38591990 PMCID: PMC11044694 DOI: 10.1021/acsnano.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Lithium lanthanum titanate (LLTO) perovskite is one of the most promising electrolytes for all-solid-state batteries, but its performance is limited by the presence of grain boundaries (GBs). The fraction of GBs can be significantly reduced by the preparation of coarse-grained LLTO ceramics. In this work, we describe an alternative approach to the fabrication of ceramics with large LLTO grains based on self-seeded grain growth. In compositions with the starting stoichiometry for the Li0.20La0.60TiO3 phase and with a high excess addition of Li (Li:La:Ti = 11:15:25), microstructure development starts with the formation of the layered RP-type Li2La2Ti3O10 phase. Grains with many RP-type defects initially develop into large platelets with thicknesses of up to 10 μm and lengths over 100 μm. Microstructure development continues with the crystallization of LLTO perovskite, epitaxially on the platelets and as smaller grains with thinner in-grain RP-lamellae. Theoretical calculations confirmed that the formation of RP-type sequences is energetically favored and precedes the formation of the LLTO perovskite phase. At around 1250 °C, the RP-type sequences become thermally unstable and gradually recrystallize to LLTO via the ionic exchange between the Li-rich RP-layers and the neighboring Ti and La layers as shown by quantitative HAADF-STEM. At higher sintering temperatures, LLTO grains become free of RP-type defects and the small grains recrystallize onto the large platelike seed grains via Ostwald ripening. The final microstructure is coarse-grained LLTO with total ionic conductivity in the range of 1 × 10-4 S/cm.
Collapse
Affiliation(s)
- Petruša Borštnar
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Goran Dražić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, 1000 Ljubljana, Slovenia
| | - Che-an Lin
- Department
of Materials Science and Engineering, National
Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-kang Lin
- Department
of Materials Science and Engineering, National
Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical
Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program
on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor
and Sustainable Manufacturing, National
Cheng Kung University, Tainan 70101, Taiwan
- Core
Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Matjaž Spreitzer
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Daneu
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Woodahl C, Jamnuch S, Amado A, Uzundal CB, Berger E, Manset P, Zhu Y, Li Y, Fong DD, Connell JG, Hirata Y, Kubota Y, Owada S, Tono K, Yabashi M, Te Velthuis SGE, Tepavcevic S, Matsuda I, Drisdell WS, Schwartz CP, Freeland JW, Pascal TA, Zong A, Zuerch M. Probing lithium mobility at a solid electrolyte surface. NATURE MATERIALS 2023; 22:848-852. [PMID: 37106132 PMCID: PMC10313518 DOI: 10.1038/s41563-023-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.
Collapse
Affiliation(s)
- Clarisse Woodahl
- University of Florida, Gainesville, FL, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Sasawat Jamnuch
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Angelique Amado
- Department of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Can B Uzundal
- Department of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emma Berger
- Department of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul Manset
- École Normale Supérieure - PSL, Paris, France
| | - Yisi Zhu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yan Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Justin G Connell
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | | | - Yuya Kubota
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | | | - Sanja Tepavcevic
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Iwao Matsuda
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo, Japan
| | - Walter S Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Craig P Schwartz
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - John W Freeland
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Tod A Pascal
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, CA, USA.
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA, USA.
| | - Alfred Zong
- Department of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Zuerch
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
- Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|