1
|
Hussain S, Maktedar SS. Structural, functional and mechanical performance of advanced Graphene-based composite hydrogels. RESULTS IN CHEMISTRY 2023; 6:101029. [DOI: 10.1016/j.rechem.2023.101029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020; 12:E2702. [PMID: 33207715 PMCID: PMC7697203 DOI: 10.3390/polym12112702] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
In the present review, we focused on the fundamental concepts of hydrogels-classification, the polymers involved, synthesis methods, types of hydrogels, properties, and applications of the hydrogel. Hydrogels can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and a combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical, and hybrid bonding. The bonding is formed via different routes, such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties, such as mechanical strength, biocompatibility, biodegradability, swellability, and stimuli sensitivity. These properties are substantial for electrochemical and biomedical applications. Furthermore, this review emphasizes flexible and self-healable hydrogels as electrolytes for energy storage and energy conversion applications. Insufficient adhesiveness (less interfacial interaction) between electrodes and electrolytes and mechanical strength pose serious challenges, such as delamination of the supercapacitors, batteries, and solar cells. Owing to smart and aqueous hydrogels, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability are the critical factors that can identify the reliability and robustness of the energy storage and conversion devices. These devices are highly efficient and convenient for smart, light-weight, foldable electronics and modern pollution-free transportation in the current decade.
Collapse
Affiliation(s)
- Shahid Bashir
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Maryam Hina
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - A. H. Rajpar
- Mechanical Engineering Department, Jouf University, Sakaka 42421, Saudi Arabia;
| | - M. A. Mujtaba
- Department of Mechanical Engineering, Center for Energy Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - N. A. Alghamdi
- Department of Physics, Faculty of Science, Albaha University, Alaqiq 65779-77388, Saudi Arabia;
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - K. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - S. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| |
Collapse
|
3
|
Guo Z, Gao M, Song M, Li Y, Zhang D, Xu D, You L, Wang L, Zhuang R, Su X, Liu T, Du J, Zhang X. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5898-5906. [PMID: 27159903 DOI: 10.1002/adma.201601064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine.
Collapse
Affiliation(s)
- Zhide Guo
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Isotope, China Institute of Atomic Energy, Beijing, 102413, China
| | - Mengna Gao
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yesen Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Duo Xu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linyi You
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Liangliang Wang
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China
| | - Ting Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jin Du
- Department of Isotope, China Institute of Atomic Energy, Beijing, 102413, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Xue WJ, Feng Y, Wang F, Guo YB, Li P, Wang L, Liu YF, Wang ZW, Yang YM, Mao QS. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma. Sci Rep 2016; 6:22149. [PMID: 26915683 PMCID: PMC4768135 DOI: 10.1038/srep22149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC.
Collapse
Affiliation(s)
- Wan-Jiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Ying Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Fei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Yi-Bing Guo
- Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Lei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Yi-Fei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Zhi-Wei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Yu-Min Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226007, Jiangsu, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong University, Nantong 226007, Jiangsu, China
| | - Qin-Sheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| |
Collapse
|
5
|
|
6
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
7
|
Bashir S, Teo YY, Ramesh S, Ramesh K, Khan AA. N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. REV CHEM ENG 2015; 31. [DOI: 10.1515/revce-2015-0016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractN-succinyl chitosan (NSC) remains a promising chitosan derivative to develop targeted drug delivery, wound dressings, and tissue engineering systems. All these systems are important in life sciences. NSC is an amphiprotic derivative obtained from the N-acylation of chitosan. NSC exhibits extraordinary biocompatibility, significantly increased aqueous solubility in acidic and basic media without affecting the biological properties, appreciable transfection efficiency, and the ability to stimulate osteogenesis. NSC shows enhanced bioavailability, which highlights its potential applications in the biomedical field. This review briefly introduces chitosan, including its limitations as a biomaterial, and modifications of chitosan with a particular focus on acylation, along with a comprehensive overview of the synthesis, characterization, properties, biodistribution, and toxicological/biopharmaceutical profile of NSC. Furthermore, it extensively surveys current state-of-the-art NSC-based formulations for drug delivery with special emphasis on protein delivery, anti-cancer activity in the colon, as well as nasal and ophthalmic targeted gene/drug delivery. Moreover, it discusses NSC-based biomaterial applications in articular, adipose, and bone tissue engineering. In addition, it describes recent contributions of NSC-based hydrogels in wound dressings along with a brief account of drug delivery in combination with tissue engineering. Finally, it presents potential current challenges and future perspectives of NSC-based formulations in the biomedical field.
Collapse
|
8
|
Sarkar K, Krishna Meka SR, Madras G, Chatterjee K. A self-assembling polycationic nanocarrier that exhibits exceptional gene transfection efficiency. RSC Adv 2015. [DOI: 10.1039/c5ra14829d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A novel polycationic gene carrier was prepared by conjugation of low molecular weight polyethyleneimine with gelatin through 4-bromonaphthaleic anhydride with exceptionally high transfection efficiency.
Collapse
Affiliation(s)
- Kishor Sarkar
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore 560012
- India
| | | | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore 560012
- India
| | - Kaushik Chatterjee
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
9
|
Chen X, Tian H, Guan X. Polymeric Gene Carriers. BIOINSPIRED AND BIOMIMETIC POLYMER SYSTEMS FOR DRUG AND GENE DELIVERY 2014:171-202. [DOI: 10.1002/9783527672752.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Glycosylation-mediated targeting of carriers. J Control Release 2014; 190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
|
11
|
Chitosan conjugates with biologically active compounds: design strategies, properties, and targeted drug delivery. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0109-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polym Chem 2013. [DOI: 10.1039/c3py00752a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lactobionic acid: A high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Luo K, Li C, Li L, She W, Wang G, Gu Z. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 2012; 33:4917-27. [PMID: 22484048 DOI: 10.1016/j.biomaterials.2012.03.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/08/2012] [Indexed: 01/24/2023]
Abstract
The quest for highly efficient and safe gene delivery systems has become the key factor for successful application of gene therapy. Peptide dendrimers are currently investigated as excellent candidates for non-viral gene delivery vectors. In this study, we report the synthesis and characterization of arginine functionalized peptide dendrimer-based vectors ranging from 5th generation (G5A) to 6th generation (G6A) via click chemistry, and their use for gene transfection in vitro and in vivo. The dendrimers can condense plasmid DNA (pDNA) and protect pDNAs from nuclease digestion. Both atomic force microscopy (AFM) and dynamic light scattering (DLS) revealed that the sizes of dendrimer/DNA particles were within 180-250 nm range. In vitro studies showed that the functionalized peptide dendrimers provided serum independent and high transfection efficiency on all studied cells, as over 2 fold higher than that of branched polyetherimide (PEI) in the presence of serum. Dendrimer G5A with molecular weight of 17 kDa demonstrated 6-fold transfection activity than PEI in breast tumor models, as well as good biosafety proved by in vitro and in vivo toxicity evaluation. However, G6A with molecular weight of 46 kDa showed much higher cytotoxicity. The functionalized dendrimer G5A with optimal generation may be therefore a potential candidate for gene delivery vehicle.
Collapse
Affiliation(s)
- Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | |
Collapse
|
15
|
Chen H, Li M, Wan T, Zheng Q, Cheng M, Huang S, Wang Y. Design and synthesis of dual-ligand modified chitosan as a liver targeting vector. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:431-441. [PMID: 22105225 DOI: 10.1007/s10856-011-4494-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Vector plays an important role in hepatic targeted drug delivery system. In this study, a novel material as a liver targeting vector, dual-ligand modified chitosan (GCGA) composed of chitosan (CTS), glycyrrhetinic acid (GA) and lactobionic acid (LA), was designed and synthesized by an orthogonal experiment with two-step synthesis under mild conditions. The synthesized final product was characterized and confirmed by FTIR and (1)H-NMR spectroscopy, and DS of GA and LA in CTS were measured to be 13.77 and 16.74 mol% using (1)H-NMR, respectively. The cytotoxicity of CTS and GCGA was concentration dependent which was inverse proportion to the cell viability by MTT assay using L929 cell line, and inhibitory concentration 50% (IC50) was 0.2 mg/ml for GCGA. The in vitro targeting efficiency and the in vitro cellular uptake were investigated. Compared with CTS NPs and GA-CTS NPs, GCGA NPs showed good cell specificity to BEL-7402 cells via the dual-ligand-receptor-mediated recognition, leading to a higher affinity to BEL-7402 cells. The results suggested that GCGA described here has the potential to be used as an effective vector for hepatic targeted drug therapy.
Collapse
Affiliation(s)
- Houxiang Chen
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Luo XH, Huang FW, Qin SY, Wang HF, Feng J, Zhang XZ, Zhuo RX. A strategy to improve serum-tolerant transfection activity of polycation vectors by surface hydroxylation. Biomaterials 2011; 32:9925-39. [DOI: 10.1016/j.biomaterials.2011.09.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
|