1
|
Belott CJ, Gusev OA, Kikawada T, Menze MA. Membraneless and membrane-bound organelles in an anhydrobiotic cell line are protected from desiccation-induced damage. Cell Stress Chaperones 2024; 29:425-436. [PMID: 38608858 PMCID: PMC11061232 DOI: 10.1016/j.cstres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Anhydrobiotic species can survive virtually complete water loss by entering a reversible ametabolic glassy state that may persist for years in ambient conditions. The Pv11 cell line was derived from the egg mass of the anhydrobiotic midge, Polypedilum vanderplanki, and is currently the only available anhydrobiotic cell line. Our results demonstrate that the necessary preconditioning for Pv11 cells to enter anhydrobiosis causes autophagy and reduces mitochondrial respiration by over 70%. We speculate that reorganizing cellular bioenergetics to create and conserve energy stores may be valuable to successfully recover after rehydration. Furthermore, mitochondria in preconditioned cells lose their membrane potential during desiccation but rapidly restore it within 30 min upon rehydration, demonstrating that the inner mitochondrial membrane integrity is well-preserved. Strikingly, the nucleolus remains visible immediately upon rehydration in preconditioned cells while absent in control cells. In contrast, a preconditioning-induced membraneless organelle reformed after rehydration, demonstrating that membraneless organelles in Pv11 cells can be either stabilized or recovered. Staining the endoplasmic reticulum and the Golgi apparatus revealed that these organelles fragment during preconditioning. We hypothesize that this process reduces sheering stress caused by rapid changes in cellular volume during desiccation and rehydration. Additionally, preconditioning was found to cause the filamentous-actin (F-actin) network to disassemble significantly and reduce the fusion of adjacent plasma membranes. This study offers several exciting avenues for future studies in the animal model and Pv11 cell line that will further our understanding of anhydrobiosis and may lead to advancements in storing sensitive biologics at ambient temperatures for months or years.
Collapse
Affiliation(s)
- Clinton J Belott
- Department of Biology, University of Louisville, Louisville, KY, USA; Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Oleg A Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan, Russia; Molecular Biomimetics Group, Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia; Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| | - Takahiro Kikawada
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Hsu P, Cheng Y, Liao C, Litan RRR, Jhou Y, Opoc FJG, Amine AAA, Leu J. Rapid evolutionary repair by secondary perturbation of a primary disrupted transcriptional network. EMBO Rep 2023; 24:e56019. [PMID: 37009824 PMCID: PMC10240213 DOI: 10.15252/embr.202256019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The discrete steps of transcriptional rewiring have been proposed to occur neutrally to ensure steady gene expression under stabilizing selection. A conflict-free switch of a regulon between regulators may require an immediate compensatory evolution to minimize deleterious effects. Here, we perform an evolutionary repair experiment on the Lachancea kluyveri yeast sef1Δ mutant using a suppressor development strategy. Complete loss of SEF1 forces cells to initiate a compensatory process for the pleiotropic defects arising from misexpression of TCA cycle genes. Using different selective conditions, we identify two adaptive loss-of-function mutations of IRA1 and AZF1. Subsequent analyses show that Azf1 is a weak transcriptional activator regulated by the Ras1-PKA pathway. Azf1 loss-of-function triggers extensive gene expression changes responsible for compensatory, beneficial, and trade-off phenotypes. The trade-offs can be alleviated by higher cell density. Our results not only indicate that secondary transcriptional perturbation provides rapid and adaptive mechanisms potentially stabilizing the initial stage of transcriptional rewiring but also suggest how genetic polymorphisms of pleiotropic mutations could be maintained in the population.
Collapse
Affiliation(s)
- Po‐Chen Hsu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | - Yu‐Hsuan Cheng
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Present address:
Morgridge Institute for ResearchMadisonWIUSA
- Present address:
Howard Hughes Medical InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chia‐Wei Liao
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ting Jhou
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | | | - Jun‐Yi Leu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
3
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
4
|
Bartolec TK, Hamey JJ, Keller A, Chavez JD, Bruce JE, Wilkins MR. Differential Proteome and Interactome Analysis Reveal the Basis of Pleiotropy Associated With the Histidine Methyltransferase Hpm1p. Mol Cell Proteomics 2022; 21:100249. [PMID: 35609787 PMCID: PMC9234706 DOI: 10.1016/j.mcpro.2022.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 10/31/2022] Open
Abstract
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine-lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein-protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.
Collapse
Affiliation(s)
- Tara K Bartolec
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia.
| |
Collapse
|
5
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Kwasiborski A, Bastide F, Hamon B, Poupard P, Simoneau P, Guillemette T. In silico analysis of RNA interference components and miRNAs-like RNAs in the seed-borne necrotrophic fungus Alternaria brassicicola. Fungal Biol 2021; 126:224-234. [DOI: 10.1016/j.funbio.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
|
7
|
Wan X, Saito JA, Hou S, Geib SM, Yuryev A, Higa LM, Womersley CZ, Alam M. The Aphelenchus avenae genome highlights evolutionary adaptation to desiccation. Commun Biol 2021; 4:1232. [PMID: 34711923 PMCID: PMC8553787 DOI: 10.1038/s42003-021-02778-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Some organisms can withstand complete body water loss (losing up to 99% of body water) and stay in ametabolic state for decades until rehydration, which is known as anhydrobiosis. Few multicellular eukaryotes on their adult stage can withstand life without water. We still have an incomplete understanding of the mechanism for metazoan survival of anhydrobiosis. Here we report the 255-Mb genome of Aphelenchus avenae, which can endure relative zero humidity for years. Gene duplications arose genome-wide and contributed to the expansion and diversification of 763 kinases, which represents the second largest metazoan kinome to date. Transcriptome analyses of ametabolic state of A. avenae indicate the elevation of ATP level for global recycling of macromolecules and enhancement of autophagy in the early stage of anhydrobiosis. We catalogue 74 species-specific intrinsically disordered proteins, which may facilitate A. avenae to survive through desiccation stress. Our findings refine a molecular basis evolving for survival in extreme water loss and open the way for discovering new anti-desiccation strategies.
Collapse
Affiliation(s)
- Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI, USA.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China.
| | - Jennifer A Saito
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI, USA
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Anton Yuryev
- Elsevier Life Sciences Solutions, Rockville, MD, USA
| | - Lynne M Higa
- School of Life Sciences, University of Hawaii, Honolulu, HI, USA
| | | | - Maqsudul Alam
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
8
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
9
|
A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22094607. [PMID: 33925688 PMCID: PMC8124315 DOI: 10.3390/ijms22094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.
Collapse
|
10
|
Liu J, Moyankova D, Djilianov D, Deng X. Common and Specific Mechanisms of Desiccation Tolerance in Two Gesneriaceae Resurrection Plants. Multiomics Evidences. FRONTIERS IN PLANT SCIENCE 2019; 10:1067. [PMID: 31552070 PMCID: PMC6737074 DOI: 10.3389/fpls.2019.01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 05/06/2023]
Abstract
Environmental stress, especially water deficiency, seriously limits plant distribution and crop production worldwide. A small group of vascular angiosperm plants termed "resurrection plants," possess desiccation tolerance (DT) to withstand dehydration and to recover fully upon rehydration. In recent years, with the rapid development of life science in plants different omics technologies have been widely applied in resurrection plants to study DT. Boea hygrometrica is native in East and Southeast Asia, and Haberlea rhodopensis is endemic to the Balkans in Europe. They are both resurrection pants from Gesneriaceae family. This paper reviews recent advances in transcriptome and metabolome, and discusses the differences and similarities of DT features between both species. Finally, we believe we provide novel insights into understanding the mechanisms underlying the acquisition and evolution of desiccation tolerance of the resurrection plants that could substantially contribute to develop new approaches for agriculture to overcome water deficiency in future.
Collapse
Affiliation(s)
- Jie Liu
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, China
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Chloroquine Protects Human Corneal Epithelial Cells from Desiccation Stress Induced Inflammation without Altering the Autophagy Flux. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7627329. [PMID: 30519584 PMCID: PMC6241345 DOI: 10.1155/2018/7627329] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (an in-vitro model for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.
Collapse
|
12
|
Melo-Cardenas J, Zhang Y, Zhang DD, Fang D. Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2018; 7:44848-44856. [PMID: 27057639 PMCID: PMC5190139 DOI: 10.18632/oncotarget.8602] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Deubiquitylases remove ubiquitin moieties from different substrates to regulate protein activity and cell homeostasis. Since this posttranslational modification plays a role in several different cellular functions, its deregulation has been associated with different pathologies. Aberrant expression of the Ubiquitin-Specific Peptidase 22 (USP22) has been associated with poor cancer prognosis and neurological disorders. However, little is known about USP22 role in these pathologies or in normal physiology. This review summarizes the current knowledge about USP22 function from yeast to human and provides an overview of the possible mechanisms by which USP22 is emerging as a potential oncogene.
Collapse
Affiliation(s)
- Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Involvement of Heat Shock Proteins in Invertebrate Anhydrobiosis. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Moura-Martiniano NO, Machado-Ferreira E, Gazêta GS, Soares CAG. Relative transcription of autophagy-related genes in Amblyomma sculptum and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:401-428. [PMID: 29181673 DOI: 10.1007/s10493-017-0193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Ticks endure stressful off-host periods and perform as vectors of a diversity of infectious agents, thus engaging pathways that expectedly demand for autophagy. Little is known of ticks' autophagy, a conserved eukaryotic machinery assisting in homeostasis processes that also participates in tissue-dependent metabolic functions. Here, the autophagy-related ATG4 (autophagin-1), ATG6 (beclin-1) and ATG8 (LC3) mRNAs from the human diseases vector Amblyomma sculptum and the cattle-tick Rhipicephalus microplus were identified. Comparative qPCR quantifications evidenced different transcriptional status for the ATG genes in the salivary glands (SG), ovaries and intestines of actively feeding ticks. These ATGs had increased relative transcription under nutrient-deprivation, as determined by validation tests with R. microplus embryo-derivative cells BME26 and A. sculptum SG explants incubations in HBSS. Starvation lead to 4-31.8× and ~ 60-500× increments on the ATGs mRNA loads in BME26 and A. sculptum SG explants, respectively. PI3K inhibitor 3MA treatment also affected ATGs expression in BME26. Some ATGs were more transcribed in the SGs than in the ovaries of cattle-ticks. Amblyomma sculptum/R. microplus interspecific comparisons showed that ATG4 and ATG6 were 0.18× less expressed in A. sculptum SGs, but ~ 10-100× more expressed in their ovaries when compared to R. microplus organs. ATG4 and ATG8a transcript loads were ~ 120× and ~ 40× higher, respectively, in A. sculptum intestines when compared to cattle-ticks of similar weight category. ATGs expression in A. sculptum intestines increased with tick weight, indicating Atgs contribution to intracellular blood digestion. Possible roles of the autophagy machinery and their organ-specific expression profile on vector biology are discussed.
Collapse
Affiliation(s)
- Nicole O Moura-Martiniano
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Machado-Ferreira
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto S Gazêta
- Laboratório de Referência Nacional em Vetores das Riquetsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos Augusto Gomes Soares
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- , Ilha do Fundão, CCS, Bloco A, Lab. A2-120. Rua Professor Rodolpho Paulo Rocco S/N, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
15
|
Gu ZC, Wu E, Sailer C, Jando J, Styles E, Eisenkolb I, Kuschel M, Bitschar K, Wang X, Huang L, Vissa A, Yip CM, Yedidi RS, Friesen H, Enenkel C. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol Biol Cell 2017; 28:2479-2491. [PMID: 28768827 PMCID: PMC5597321 DOI: 10.1091/mbc.e17-03-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/16/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are key protease complexes responsible for protein degradation, and their localization changes with the growth conditions. This work in yeast shows that proteasomes exit the nucleus with the transition from proliferation to quiescence. Ubiquitin is a key player in proteasome dynamics and cytoplasmic proteasome granule formation. Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Edwin Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Carolin Sailer
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Julia Jando
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Erin Styles
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ina Eisenkolb
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Maike Kuschel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Katharina Bitschar
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Xiaorong Wang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Adriano Vissa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ravikiran S Yedidi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Helena Friesen
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
16
|
Zhang B, Li B, Chen D, Zong J, Sun F, Qu H, Liang C. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation. PLoS One 2016; 11:e0161502. [PMID: 27537181 PMCID: PMC4990298 DOI: 10.1371/journal.pone.0161502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Dai Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Jie Zong
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Huixin Qu
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Williams B, Njaci I, Moghaddam L, Long H, Dickman MB, Zhang X, Mundree S. Trehalose Accumulation Triggers Autophagy during Plant Desiccation. PLoS Genet 2015; 11:e1005705. [PMID: 26633550 PMCID: PMC4669190 DOI: 10.1371/journal.pgen.1005705] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.
Collapse
Affiliation(s)
- Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hao Long
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Zhu Y, Wang B, Phillips J, Zhang ZN, Du H, Xu T, Huang LC, Zhang XF, Xu GH, Li WL, Wang Z, Wang L, Liu YX, Deng X. Global Transcriptome Analysis Reveals Acclimation-Primed Processes Involved in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2015; 56:1429-41. [PMID: 25907569 DOI: 10.1093/pcp/pcv059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 05/18/2023]
Abstract
Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China These authors contributed equally to this work
| | - Bo Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China These authors contributed equally to this work
| | - Jonathan Phillips
- IMBIO (Molekulare Physiologie und Biotechnologie der Pflanzen), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Present address: Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Zhen-Nan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Du
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lian-Cheng Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Fei Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Guang-Hui Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Long Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ling Wang
- Shanghai OE Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
19
|
Liepins J, Kovačova E, Shvirksts K, Grube M, Rapoport A, Kogan G. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans. J Biotechnol 2015; 206:12-6. [PMID: 25858155 DOI: 10.1016/j.jbiotec.2015.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
Abstract
Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran.
Collapse
Affiliation(s)
- Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia.
| | - Elena Kovačova
- Institute of Virology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84245 Bratislava, Slovakia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Alexander Rapoport
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Grigorij Kogan
- Directorate E Health, Directorate General for Research and Innovation, European Commission, B-1049 Brussels, Belgium
| |
Collapse
|
20
|
López-Martínez G, Margalef-Català M, Salinas F, Liti G, Cordero-Otero R. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae. PLoS One 2015; 10:e0119606. [PMID: 25803831 PMCID: PMC4372426 DOI: 10.1371/journal.pone.0119606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
Abstract
Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.
Collapse
Affiliation(s)
- Gema López-Martínez
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
| | - Mar Margalef-Català
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
| | - Francisco Salinas
- Institute of Research on Cancer and Ageing of Nice, University Sophia Antipolis, Nice, France
| | - Gianni Liti
- Institute of Research on Cancer and Ageing of Nice, University Sophia Antipolis, Nice, France
| | - Ricardo Cordero-Otero
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
- * E-mail:
| |
Collapse
|
21
|
Hartman JL, Stisher C, Outlaw DA, Guo J, Shah NA, Tian D, Santos SM, Rodgers JW, White RA. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease. Genes (Basel) 2015; 6:24-45. [PMID: 25668739 PMCID: PMC4377832 DOI: 10.3390/genes6010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023] Open
Abstract
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease.
Collapse
Affiliation(s)
- John L Hartman
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Chandler Stisher
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Darryl A Outlaw
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Jingyu Guo
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Najaf A Shah
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Dehua Tian
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Sean M Santos
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - John W Rodgers
- Department of Genetics, University of Alabama at Birmingham, 730 Hugh Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA.
| | - Richard A White
- Department of Statistics and Michael Smith Laboratories, University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC V6T-1Z4, Canada.
| |
Collapse
|
22
|
Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R. Revisiting yeast trehalose metabolism. Curr Genet 2014; 61:263-74. [DOI: 10.1007/s00294-014-0450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
|
23
|
Dupont S, Rapoport A, Gervais P, Beney L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 2014; 98:8821-34. [DOI: 10.1007/s00253-014-6028-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023]
|
24
|
Romano P, Pietrafesa R, Romaniello R, Zambuto M, Calabretti A, Capece A. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation. Yeast 2014; 32:245-56. [DOI: 10.1002/yea.3034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/27/2014] [Indexed: 11/10/2022] Open
Affiliation(s)
- Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Rossana Romaniello
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Marianna Zambuto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Antonella Calabretti
- DEAMS; Università degli Studi di Trieste, Sezione di Merceologia, Biologia, Farmaceutica e Alimenti; Trieste Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
25
|
Imam S, Noguera DR, Donohue TJ. Global insights into energetic and metabolic networks in Rhodobacter sphaeroides. BMC SYSTEMS BIOLOGY 2013; 7:89. [PMID: 24034347 PMCID: PMC3849096 DOI: 10.1186/1752-0509-7-89] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
Background Improving our understanding of processes at the core of cellular lifestyles can be aided by combining information from genetic analyses, high-throughput experiments and computational predictions. Results We combined data and predictions derived from phenotypic, physiological, genetic and computational analyses to dissect the metabolic and energetic networks of the facultative photosynthetic bacterium Rhodobacter sphaeroides. We focused our analysis on pathways crucial to the production and recycling of pyridine nucleotides during aerobic respiratory and anaerobic photosynthetic growth in the presence of an organic electron donor. In particular, we assessed the requirement for NADH/NADPH transhydrogenase enzyme, PntAB during respiratory and photosynthetic growth. Using high-throughput phenotype microarrays (PMs), we found that PntAB is essential for photosynthetic growth in the presence of many organic electron donors, particularly those predicted to require its activity to produce NADPH. Utilizing the genome-scale metabolic model iRsp1095, we predicted alternative routes of NADPH synthesis and used gene expression analyses to show that transcripts from a subset of the corresponding genes were conditionally increased in a ΔpntAB mutant. We then used a combination of metabolic flux predictions and mutational analysis to identify flux redistribution patterns utilized in the ΔpntAB mutant to compensate for the loss of this enzyme. Data generated from metabolic and phenotypic analyses of wild type and mutant cells were used to develop iRsp1140, an expanded genome-scale metabolic reconstruction for R. sphaeroides with improved ability to analyze and predict pathways associated with photosynthesis and other metabolic processes. Conclusions These analyses increased our understanding of key aspects of the photosynthetic lifestyle, highlighting the added importance of NADPH production under these conditions. It also led to a significant improvement in the predictive capabilities of a metabolic model for the different energetic lifestyles of a facultative organism.
Collapse
Affiliation(s)
- Saheed Imam
- Department of Bacteriology, University of Wisconsin, Madison, Suite 5166, Wisconsin Energy Institute, 1552 University Avenue, Madison, WI 53726-4084, USA.
| | | | | |
Collapse
|
26
|
Skelly DA, Merrihew GE, Riffle M, Connelly CF, Kerr EO, Johansson M, Jaschob D, Graczyk B, Shulman NJ, Wakefield J, Cooper SJ, Fields S, Noble WS, Muller EGD, Davis TN, Dunham MJ, Maccoss MJ, Akey JM. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 2013; 23:1496-504. [PMID: 23720455 PMCID: PMC3759725 DOI: 10.1101/gr.155762.113] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes.
Collapse
Affiliation(s)
- Daniel A Skelly
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Welch AZ, Gibney PA, Botstein D, Koshland DE. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 2012; 24:115-28. [PMID: 23171550 PMCID: PMC3541959 DOI: 10.1091/mbc.e12-07-0524] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000-fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.
Collapse
Affiliation(s)
- Aaron Z Welch
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
28
|
Air-drying kinetics affect yeast membrane organization and survival. Appl Microbiol Biotechnol 2012; 96:471-80. [DOI: 10.1007/s00253-012-4014-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
29
|
Abstract
Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20-40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance.
Collapse
|