1
|
Fernandes HP, Salomé-Abarca LF, Gonçalves Pereira R, Brandão Seibert J, Silva-Junior GJ, Das Graças Fernandes da Silva MF, Choi YH. Metabolomic Investigation of Citrus latifolia and the Putative Role of Coumarins in Resistance to Black Spot Disease. Front Mol Biosci 2022; 9:934401. [PMID: 35813812 PMCID: PMC9263546 DOI: 10.3389/fmolb.2022.934401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Citrus black spot (CBS) is a disease caused by the fungus Phyllosticta citricarpa that affects citrus plants, causing fruit blemish and premature drop that result in severe economic losses in commercial citrus orchards. However, CBS symptoms and effects may vary depending on the citrus species: Citrus limon (lemon) is susceptible and highly affected by the disease, while no CBS-related damage has ever been observed for Citrus latifolia (Tahiti lime), implying that it must be resistant to the disease. The difference in the response to this disease provided the opportunity to gain insight into the metabolites responsible for the resistance by comparison of the metabolomic profiles of these two citrus species. Metabolic variations of C. limon and C. latifolia inoculated with P. citricarpa were analyzed using various metabolomic-based platforms including 1H NMR for overall metabolic profiling, and LC-MS and HPTLC for targeted analysis. The 1H NMR spectra of the samples demonstrated that certain phenolics were strongly induced after pathogenic inoculation, especially in the resistant species. The induced phenolics were identified from C. latifolia by further 1H NMR, LCMS and HPTLC analysis yielding six prenylated and methoxy coumarins, i.e., 5,7-dimethoxycoumarin, 5-geranyloxy-7-methoxycoumarin, 7-geranyloxycoumarin, 8-methoxypsoralen, 5,8-dimethoxypsoralen and 5-geranyloxypsoralen. These isolated coumarins and a coumarin-rich fraction were tested against the fungal pathogen, P. citricarpa, to evaluate their activity. None of the individual coumarins exhibited a significant inhibition, while the coumarin fraction exhibited a strong antifungal activity suggesting a synergistic interaction of its components. To obtain further insight into the roles of these compounds in the plant defense, the possible mechanisms of the individual coumarins were tested using an in-silico model, the PASS Online Tool; the analysis showed that each coumarin appeared to have a unique defense mechanism, even with very slight variations in the chemical structures. The results could provide evidence of the existence of a complex plant defense mechanism consisting in a multitude of synergistic interactions between compounds.
Collapse
Affiliation(s)
- Hocelayne Paulino Fernandes
- Natural Products Laboratory, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | | | - Janaína Brandão Seibert
- Natural Products Laboratory, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Abstract
![]()
The paradigm of antivirulence
therapy dictates that bacterial pathogens
are specifically disarmed but not killed by neutralizing their virulence
factors. Clearance of the invading pathogen by the immune system is
promoted. As compared to antibiotics, the pathogen-selective antivirulence
drugs hold promise to minimize collateral damage to the beneficial
microbiome. Also, selective pressure for resistance is expected to
be lower because bacterial viability is not directly affected. Antivirulence
drugs are being developed for stand-alone prophylactic and therapeutic
treatments but also for combinatorial use with antibiotics. This Review
focuses on drug modalities that target bacterial exotoxins after the
secretion or release-upon-lysis. Exotoxins have a significant and
sometimes the primary role as the disease-causing virulence factor,
and thereby they are attractive targets for drug development. We describe
the key pre-clinical and clinical trial data that have led to the
approval of currently used exotoxin-targeted drugs, namely the monoclonal
antibodies bezlotoxumab (toxin B/TcdB, Clostridioides difficile), raxibacumab (anthrax toxin, Bacillus anthracis), and obiltoxaximab (anthrax toxin, Bacillus anthracis), but also to challenges with some of the promising leads. We also
highlight the recent developments in pre-clinical research sector
to develop exotoxin-targeted drug modalities, i.e., monoclonal antibodies,
antibody fragments, antibody mimetics, receptor analogs, neutralizing
scaffolds, dominant-negative mutants, and small molecules. We describe
how these exotoxin-targeted drug modalities work with high-resolution
structural knowledge and highlight their advantages and disadvantages
as antibiotic alternatives.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arttu Laisi
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
3
|
Ashok Y, Miettinen M, Oliveira DKHD, Tamirat MZ, Näreoja K, Tiwari A, Hottiger MO, Johnson MS, Lehtiö L, Pulliainen AT. Discovery of Compounds Inhibiting the ADP-Ribosyltransferase Activity of Pertussis Toxin. ACS Infect Dis 2020; 6:588-602. [PMID: 31899865 DOI: 10.1021/acsinfecdis.9b00412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The targeted pathogen-selective approach to drug development holds promise to minimize collateral damage to the beneficial microbiome. The AB5-topology pertussis toxin (PtxS1-S5) is a major virulence factor of Bordetella pertussis, the causative agent of the highly contagious respiratory disease whooping cough. Once internalized into the host cell, PtxS1 ADP-ribosylates α-subunits of the heterotrimeric Gαi-superfamily, thereby disrupting G-protein-coupled receptor signaling. Here, we report the discovery of the first small molecules inhibiting the ADP-ribosyltransferase activity of pertussis toxin. We developed protocols to purify milligram-levels of active recombinant B. pertussis PtxS1 from Escherichia coli and an in vitro high throughput-compatible assay to quantify NAD+ consumption during PtxS1-catalyzed ADP-ribosylation of Gαi. Two inhibitory compounds (NSC228155 and NSC29193) with low micromolar IC50-values (3.0 μM and 6.8 μM) were identified in the in vitro NAD+ consumption assay that also were potent in an independent in vitro assay monitoring conjugation of ADP-ribose to Gαi. Docking and molecular dynamics simulations identified plausible binding poses of NSC228155 and in particular of NSC29193, most likely owing to the rigidity of the latter ligand, at the NAD+-binding pocket of PtxS1. NSC228155 inhibited the pertussis AB5 holotoxin-catalyzed ADP-ribosylation of Gαi in living human cells with a low micromolar IC50-value (2.4 μM). NSC228155 and NSC29193 might prove to be useful hit compounds in targeted B. pertussis-selective drug development.
Collapse
Affiliation(s)
- Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Moona Miettinen
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Danilo Kimio Hirabae de Oliveira
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Katja Näreoja
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Avlokita Tiwari
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
4
|
Seibert JB, Viegas JSR, Almeida TC, Amparo TR, Rodrigues IV, Lanza JS, Frézard FJG, Soares RDOA, Teixeira LFM, de Souza GHB, Vieira PMA, Barichello JM, Dos Santos ODH. Nanostructured Systems Improve the Antimicrobial Potential of the Essential Oil from Cymbopogon densiflorus Leaves. JOURNAL OF NATURAL PRODUCTS 2019; 82:3208-3220. [PMID: 31815454 DOI: 10.1021/acs.jnatprod.8b00870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha-2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances.
Collapse
Affiliation(s)
- Janaína B Seibert
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Juliana S R Viegas
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tamires C Almeida
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tatiane R Amparo
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Ivanildes V Rodrigues
- Departamento de Farmácia , Universidade Federal de Juiz de Fora , Governador Valadares , 36010-041 , Brazil
| | - Juliane S Lanza
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Frédéric J G Frézard
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Rodrigo D O A Soares
- Núcleo de Pesquisas em Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Luiz Fernando M Teixeira
- Departamento de Análises Clínicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Gustavo H B de Souza
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Paula M A Vieira
- Departamento de Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - José M Barichello
- Departamento de Farmácia , Universidade Federal de Pelotas , Pelotas , 96020-000 , Brazil
| | - Orlando D H Dos Santos
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| |
Collapse
|
5
|
Jarrad A, Karoli T, Blaskovich MAT, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 2015; 58:5164-85. [PMID: 25760275 PMCID: PMC4500462 DOI: 10.1021/jm5016846] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/17/2022]
Abstract
In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization.
Collapse
Affiliation(s)
- Angie
M. Jarrad
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tomislav Karoli
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dena Lyras
- School
of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Cooper
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Venkannagari H, Fallarero A, Feijs KLH, Lüscher B, Lehtiö L. Activity-based assay for human mono-ADP-ribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors. Eur J Pharm Sci 2013; 49:148-56. [PMID: 23485441 DOI: 10.1016/j.ejps.2013.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) or diphtheria toxin like ADP-ribosyl transferases (ARTDs) are enzymes that catalyze the covalent modification of proteins by attachment of ADP-ribose units to the target amino acid residues or to the growing chain of ADP-ribose. A subclass of the ARTD superfamily consists of mono-ADP-ribosyl transferases that are thought to modify themselves and other substrate proteins by covalently adding only a single ADP-ribose moiety to the target. Many of the ARTD enzymes are either established or potential drug targets and a functional activity assay for them will be a valuable tool to identify selective inhibitors for each enzyme. Existing assays are not directly applicable for screening of inhibitors due to the different nature of the reaction and different target molecules. We modified and applied a fluorescence-based assay previously described for PARP1/ARTD1 and tankyrase/ARTD5 for screening of PARP10/ARTD10 and PARP15/ARTD7 inhibitors. The assay measures the amount of NAD(+) present after chemically converting it to a fluorescent analog. We demonstrate that by using an excess of a recombinant acceptor protein the performance of the activity-based assay is excellent for screening of compound libraries. The assay is homogenous and cost effective, making it possible to test relatively large compound libraries. This method can be used to screen inhibitors of mono-ARTDs and profile inhibitors of the enzyme class. The assay was optimized for ARTD10 and ARTD7, but it can be directly applied to other mono-ARTDs of the ARTD superfamily. Profiling of known ARTD inhibitors against ARTD10 and ARTD7 in a validatory screening identified the best inhibitors with submicromolar potencies. Only few of the tested ARTD inhibitors were potent, implicating that there is a need to screen new compound scaffolds. This is needed to create small molecules that could serve as biological probes and potential starting points for drug discovery projects against mono-ARTDs.
Collapse
|
7
|
Fieldhouse RJ, Jørgensen R, Lugo MR, Merrill AR. The 1.8 Å cholix toxin crystal structure in complex with NAD+ and evidence for a new kinetic model. J Biol Chem 2012; 287:21176-88. [PMID: 22535961 DOI: 10.1074/jbc.m111.337311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Certain Vibrio cholerae strains produce cholix, a potent protein toxin that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 1.8 Å crystal structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD(+)). We also substituted hallmark catalytic residues by site-directed mutagenesis and analyzed both NAD(+) binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These data are the basis for a new kinetic model of cholix toxin activity. Further, the new structural data serve as a reference for continuing inhibitor development for this toxin class.
Collapse
Affiliation(s)
- Robert J Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
8
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
9
|
|