1
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
2
|
Wang X, Qu Y, Xu Q, Jiang Z, Wang H, Lin B, Cao Z, Pan Y, Li S, Hu Y, Yang H, He L, Chang H, Hang B, Wen H, Wu H, Mao JH. NQO1 Triggers Neutrophil Recruitment and NET Formation to Drive Lung Metastasis of Invasive Breast Cancer. Cancer Res 2024; 84:3538-3555. [PMID: 39073320 DOI: 10.1158/0008-5472.can-24-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Metastasis to the lungs is a leading cause of death for patients with breast cancer. Therefore, effective therapies are urgently needed to prevent and treat lung metastasis. In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis. NQO1 stabilized and upregulated peptidyl-prolyl cis-trans isomerase A (PPIA), a chaperone that regulates protein conformation and activity, by preventing its oxidation at a critical cysteine residue C161. PPIA subsequently activated CD147, a membrane protein that facilitates cell invasion. Moreover, NQO1-induced secretion of PPIA modulated the immune landscape of both primary and lung metastatic sites. Secreted PPIA engaged CD147 on neutrophils and triggered the release of neutrophil extracellular traps (NET) and neutrophil elastase, which enhanced tumor progression, invasiveness, and lung colonization. Pharmacological targeting of PPIA effectively inhibited NQO1-mediated breast cancer lung metastasis. These findings reveal a previously unrecognized NQO1-PPIA-CD147-NET axis that drives breast cancer lung metastasis. Inhibiting this axis is a potential therapeutic strategy to limit lung metastasis in patients with breast cancer. Significance: NQO1 stabilizes and promotes the secretion of PPIA to activate CD147 in neutrophils and stimulate NET formation, promoting breast cancer lung metastasis and providing therapeutic targets for this fatal condition.
Collapse
Affiliation(s)
- Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yi Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Qianqian Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Zeyu Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Hang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Binyan Lin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Sheng Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yili Hu
- Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Hongmei Wen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
3
|
Shapiro J, Post SJ, Smith GC, Wuest WM. Total Synthesis of the Reported Structure of Cahuitamycin A: Insights into an Elusive Natural Product Scaffold. Org Lett 2023; 25:9243-9248. [PMID: 38155597 PMCID: PMC10758118 DOI: 10.1021/acs.orglett.3c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
In a 2016 screen of natural product extracts, a new family of natural products, the cahuitamycins, was discovered and found to inhibit biofilm formation in the human pathogen Acinetobacter baumannii. The proposed molecular structures contained an unusual piperazic acid residue, which piqued interest related to their structure/function and biosynthesis. Herein we disclose the first total synthesis of the proposed structure of cahuitamycin A in a 12-step longest linear sequence and 18% overall yield. Comparison of spectral and biological data of the authentic natural product and synthetic compound revealed inconsistentancies with the isolated metabolite. We therefore executed the diverted total synthesis of three isomeric compounds, which were also found to be disparate from the isolated natural product. This work sets the stage for future synthetic and biochemical investigations of an important class of natural products.
Collapse
Affiliation(s)
- Justin
A. Shapiro
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Savannah J. Post
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin C. Smith
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory
Antibiotic Resistance Center, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Shin D, Byun WS, Kang S, Kang I, Bae ES, An JS, Im JH, Park J, Kim E, Ko K, Hwang S, Lee H, Kwon Y, Ko YJ, Hong S, Nam SJ, Kim SB, Fenical W, Yoon YJ, Cho JC, Lee SK, Oh DC. Targeted and Logical Discovery of Piperazic Acid-Bearing Natural Products Based on Genomic and Spectroscopic Signatures. J Am Chem Soc 2023; 145:19676-19690. [PMID: 37642383 DOI: 10.1021/jacs.3c04699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Collapse
Affiliation(s)
- Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Honghui Lee
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- MolGenBio Co., Ltd., Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Wei ZW, Niikura H, Morgan KD, Vacariu CM, Andersen RJ, Ryan KS. Free Piperazic Acid as a Precursor to Nonribosomal Peptides. J Am Chem Soc 2022; 144:13556-13564. [PMID: 35867963 DOI: 10.1021/jacs.2c03660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Piperazic acid (Piz) is a nonproteinogenic amino acid possessing a rare nitrogen-nitrogen bond. However, little is known about how Piz is incorporated into nonribosomal peptides, including whether adenylation domains specific to Piz exist. In this study, we show that free piperazic acid is directly adenylated and then incorporated into the incarnatapeptin nonribosomal peptides through isotopic incorporation studies. We also use in vitro reconstitution to demonstrate adenylation of free piperazic acid with a three-domain nonribosomal peptide synthetase from the incarnatapeptin gene cluster. We furthermore use bioinformatics and site-directed mutagenesis to outline consensus sequences for the adenylation of piperazic acid, which can now be used for the prediction of gene clusters linked to piperazic-acid-containing peptides. Finally, we discover a fusion protein of a piperazate synthase and an adenylation domain, highlighting the close biosynthetic relationship of piperazic acid formation and its adenylation. Altogether, our work demonstrates the evolution of biosynthetic systems for the activation of free piperazic acid through adenylation, a pathway we suggest is likely to be employed in the majority of pathways to piperazic-acid-containing peptides.
Collapse
|
6
|
Zhang J, Zheng M, Yan J, Deng Z, Zhu D, Qu X. A Permissive Medium Chain Acyl-CoA Carboxylase Enables the Efficient Biosynthesis of Extender Units for Engineering Polyketide Carbon Scaffolds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Kong C, Wang Z, Liu G, Chi Z, Ledesma‐Amaro R, Chi Z. Bioproduction of L-piperazic acid in gram scale using Aureobasidium melanogenum. Microb Biotechnol 2021; 14:1722-1729. [PMID: 34081404 PMCID: PMC8313269 DOI: 10.1111/1751-7915.13838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Currently, piperazic acid is chemically synthesized using ecologically unfriendly processes. Microbial synthesis from glucose is an attractive alternative to chemical synthesis. In this study, we report the production of L-piperazic acid via microbial fermentation with the first engineered fungal strain of Aureobasidium melanogenum; this strain was constructed by chassis development, genetic element reconstitution and optimization, synthetic rewiring and constitutive genetic circuit reconstitution, to build a robust L-piperazic acid synthetic cascade. These genetic modifications enable A. melanogenum to directly convert glucose to L-piperazic acid without relying on the use of either chemically synthesized precursors or harsh conditions. This bio-based process overcomes the shortcomings of the conventional synthesis routes. The ultimately engineered strain is a very high-efficient cell factory that can excrete 1.12 ± 0.05 g l-1 of L-piperazic acid after a 120-h 10.0-l fed-batch fermentation; this is the highest titre of L-piperazic acid reported using a microbial cell factory.
Collapse
Affiliation(s)
- Cuncui Kong
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
| | - Zhuangzhuang Wang
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
| | - Guanglei Liu
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| | - Zhenming Chi
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| | | | - Zhe Chi
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| |
Collapse
|
8
|
Liu W, Jannu VG, Liu Z, Zhang Q, Jiang X, Ma L, Zhang W, Zhang C, Zhu Y. Heterologous expression of the trichostatin gene cluster and functional characterization ofN-methyltransferase TsnB8. Org Biomol Chem 2020; 18:3649-3653. [DOI: 10.1039/d0ob00617c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Methyltransferase TsnB8 was demonstrated to catalyze successive methyltransfer reactions in the biosynthesis of trichostatin.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Vinay Gopal Jannu
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Innovation Academy of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
9
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
10
|
Hu Y, Qi Y, Stumpf SD, D’Alessandro JM, Blodgett JAV. Bioinformatic and Functional Evaluation of Actinobacterial Piperazate Metabolism. ACS Chem Biol 2019; 14:696-703. [PMID: 30921511 DOI: 10.1021/acschembio.8b01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Piperazate (Piz) is a nonproteinogenic amino acid noted for its unusual N-N bond motif. Piz is a proline mimic that imparts conformational rigidity to peptides. Consequently, piperazyl molecules are often bioactive and desirable for therapeutic exploration. The in vitro characterization of Kutzneria enzymes KtzI and KtzT recently led to a biosynthetic pathway for Piz. However, Piz anabolism in vivo has remained completely uncharacterized. Herein, we describe the systematic interrogation of actinobacterial Piz metabolism using a combination of bioinformatics, genetics, and select biochemistry. Following studies in Streptomyces flaveolus, Streptomyces lividans, and several environmental Streptomyces isolates, our data suggest that KtzI-type enzymes are conditionally dispensable for Piz production. We also demonstrate the feasibility of Piz monomer production using engineered actinobacteria for the first time. Finally, we show that some actinobacteria employ fused KtzI-KtzT chimeric enzymes to produce Piz. Our findings have implications for future piperazyl drug discovery, pathway engineering, and fine chemical bioproduction.
Collapse
Affiliation(s)
- Yifei Hu
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - John M. D’Alessandro
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
12
|
Morgan KD, Andersen RJ, Ryan KS. Piperazic acid-containing natural products: structures and biosynthesis. Nat Prod Rep 2019; 36:1628-1653. [DOI: 10.1039/c8np00076j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piperazic acid is a cyclic hydrazine and a non-proteinogenic amino acid found in diverse non-ribosomal peptide (NRP) and hybrid NRP–polyketide (PK) structures.
Collapse
Affiliation(s)
- Kalindi D. Morgan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
13
|
Matsuda K, Tomita T, Shin-ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of Unprecedented Hydrazine-Forming Machinery in Bacteria. J Am Chem Soc 2018; 140:9083-9086. [DOI: 10.1021/jacs.8b05354] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Wolf F, Leipoldt F, Kulik A, Wibberg D, Kalinowski J, Kaysser L. Characterization of the Actinonin Biosynthetic Gene Cluster. Chembiochem 2018; 19:1189-1195. [PMID: 29600569 DOI: 10.1002/cbic.201800116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/05/2022]
Abstract
The hydroxamate moiety of the natural product actinonin mediates inhibition of metalloproteinases because of its chelating properties towards divalent cations in the active site of those enzymes. Owing to its antimicrobial activity, actinonin has served as a lead compound for the development of new antibiotic drug candidates. Recently, we identified a putative gene cluster for the biosynthesis of actinonin. Here, we confirm and characterize this cluster by heterologous pathway expression and gene-deletion experiments. We assigned the biosynthetic gene cluster to actinonin production and determine the cluster boundaries. Furthermore, we establish that ActI, an AurF-like oxygenase, is responsible for the N-hydroxylation reaction that forms the hydroxamate warhead. Our findings provide the basis for more detailed investigations of actinonin biosynthesis.
Collapse
Affiliation(s)
- Felix Wolf
- Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen
| | - Franziska Leipoldt
- Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen
| | - Andreas Kulik
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33594, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33594, Bielefeld, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen
| |
Collapse
|
15
|
Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Sci Rep 2018; 8:3230. [PMID: 29459765 PMCID: PMC5818483 DOI: 10.1038/s41598-018-21507-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022] Open
Abstract
Kirromycin is the main product of the soil-dwelling Streptomyces collinus Tü 365. The elucidation of the biosynthetic pathway revealed that the antibiotic is synthesised via a unique combination of trans-/cis-AT type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS). This was the first example of an assembly line integrating the three biosynthetic principles in one pathway. However, information about other enzymes involved in kirromycin biosynthesis remained scarce. In this study, genes encoding tailoring enzymes KirM, KirHVI, KirOI, and KirOII, and the putative crotonyl-CoA reductase/carboxylase KirN were deleted, complemented, and the emerged products analysed by HPLC-HRMS and MS/MS. Derivatives were identified in mutants ΔkirM, ΔkirHVI, ΔkirOI, and ΔkirOII. The products of ΔkirOI, ΔkirOII, and kirHVI were subjected to 2D-NMR for structure elucidation. Our results enabled functional assignment of those enzymes, demonstrating their involvement in kirromycin tailoring. In the ΔkirN mutant, the production of kirromycin was significantly decreased. The obtained data enabled us to clarify the putative roles of the studied enzymes, ultimately allowing us to fill many of the missing gaps in the biosynthesis of the complex antibiotic. Furthermore, this collection of mutants can serve as a toolbox for generation of new kirromycins.
Collapse
|
16
|
Warhead biosynthesis and the origin of structural diversity in hydroxamate metalloproteinase inhibitors. Nat Commun 2017; 8:1965. [PMID: 29213087 PMCID: PMC5719088 DOI: 10.1038/s41467-017-01975-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Metalloproteinase inhibitors often feature hydroxamate moieties to facilitate the chelation of metal ions in the catalytic center of target enzymes. Actinonin and matlystatins are potent metalloproteinase inhibitors that comprise rare N-hydroxy-2-pentyl-succinamic acid warheads. Here we report the identification and characterization of their biosynthetic pathways. By gene cluster comparison and a combination of precursor feeding studies, heterologous pathway expression and gene deletion experiments we are able to show that the N-hydroxy-alkyl-succinamic acid warhead is generated by an unprecedented variation of the ethylmalonyl-CoA pathway. Moreover, we present evidence that the remarkable structural diversity of matlystatin congeners originates from the activity of a decarboxylase-dehydrogenase enzyme with high similarity to enzymes that form epoxyketones. We further exploit this mechanism to direct the biosynthesis of non-natural matlystatin derivatives. Our work paves the way for follow-up studies on these fascinating pathways and allows the identification of new protease inhibitors by genome mining. Metalloproteinase inhibitors are leads for drug development, but their biosynthetic pathways are often unknown. Here the authors show that the acyl branched warhead of actinonin and matlystatins derives from an ethylmalonyl-CoA-like pathway and the structural diversity of matlystatins is due to the activity of a decarboxylase-dehydrogenase enzyme.
Collapse
|
17
|
|
18
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
19
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
20
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
21
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
22
|
Hong Q, Li Y, Chen X, Ye H, Tang L, Zhou A, Hu Y, Gao Y, Chen R, Xia Y, Duan S. CDKN2B, SLC19A3 and DLEC1 promoter methylation alterations in the bone marrow of patients with acute myeloid leukemia during chemotherapy. Exp Ther Med 2016; 11:1901-1907. [PMID: 27168825 DOI: 10.3892/etm.2016.3092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that promoter hypermethylation of tumor suppressor genes contributes to the occurrence and development of acute myeloid leukemia (AML). However, the association of DNA methylation with chemotherapeutic outcomes remains unknown. In the present study, 15 patients with AML were recruited, and the promoter methylation status of cyclin-dependent kinase inhibitor 2B (CDKN2B), solute carrier family 19 member 3 (SLC19A3) and deleted in lung and esophageal cancer 1 (DLEC1) genes was examined prior to and following various chemotherapeutic regimens in order to identify any alterations. The results suggested that chemotherapy-induced hypermethylation of CDKN2B and DLEC1 may be specific to males and females, respectively, and that there were no alterations in SLC19A3 methylation following chemotherapy. These results may provide an improved understanding of gene methylation to guide the development of an individualized chemotherapy for AML. Due to the complexity of AML and the wide range of treatment types, future studies with a larger sample size are required in order to verify the results of the present investigation.
Collapse
Affiliation(s)
- Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yirun Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoying Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Annan Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuting Gao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Rongrong Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yongming Xia
- Department of Hematology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
23
|
Shi Y, Jiang Z, Lei X, Zhang N, Cai Q, Li Q, Wang L, Si S, Xie Y, Hong B. Improving the N-terminal diversity of sansanmycin through mutasynthesis. Microb Cell Fact 2016; 15:77. [PMID: 27154005 PMCID: PMC4858918 DOI: 10.1186/s12934-016-0471-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sansanmycins are uridyl peptide antibiotics (UPAs), which are inhibitors of translocase I (MraY) and block the bacterial cell wall biosynthesis. They have good antibacterial activity against Pseudomonas aeruginosa and Mycobacterium tuberculosis strains. The biosynthetic gene cluster of sansanmycins has been characterized and the main biosynthetic pathway elucidated according to that of pacidamycins which were catalyzed by nonribosomal peptide synthetases (NRPSs). Sananmycin A is the major compound of Streptomyces sp. SS (wild type strain) and it bears a non-proteinogenic amino acid, meta-tyrosine (m-Tyr), at the N-terminus of tetrapeptide chain. RESULTS ssaX deletion mutant SS/XKO was constructed by the λ-RED mediated PCR targeting method and confirmed by PCR and southern blot. The disruption of ssaX completely abolished the production of sansanmycin A. Complementation in vivo and in vitro could both recover the production of sansanmycin A, and the overexpression of SsaX apparently increased the production of sansanmycin A by 20%. Six new compounds were identified in the fermentation culture of ssaX deletion mutant. Some more novel sansanmycin analogues were obtained by mutasynthesis, and totally ten sansanmycin analogues, MX-1 to MX-10, were purified and identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). The bioassay of these sansanmycin analogues showed that sansanmycin MX-1, MX-2, MX-4, MX-6 and MX-7 exhibited comparable potency to sansanmycin A against M. tuberculosis H37Rv, as well as multi-drug-resistant (MDR) and extensive-drug-resistant (XDR) strains. Moreover, sansanmycin MX-2 and MX-4 displayed much better stability than sansanmycin A. CONCLUSIONS We demonstrated that SsaX is responsible for the biosynthesis of m-Tyr in vivo by gene deletion and complementation. About twenty novel sansanmycin analogues were obtained by mutasynthesis in ssaX deletion mutant SS/XKO and ten of them were purified and structurally identified. Among them, MX-2 and MX-4 showed promising anti-MDR and anti-XDR tuberculosis activity and greater stability than sansanmycin A. These results indicated that ssaX deletion mutant SS/XKO was a suitable host to expand the diversity of the N-terminus of UPAs, with potential to yield more novel compounds with improved activity and/or other properties.
Collapse
Affiliation(s)
- Yuanyuan Shi
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Zhibo Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Xuan Lei
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Ningning Zhang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qiang Cai
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qinglian Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Lifei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Shuyi Si
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Yunying Xie
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| | - Bin Hong
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
24
|
Tian N, Tang Y, Chen Y, Zhen Z, Long J, Liu Z, Liu S. WITHDRAWN: Identification of an antimycin gene cluster and characterization of the tryptophan 2,3-dioxygenase from the deep sea-derived Streptomyces somaliensis HND1201. Biochem Biophys Res Commun 2015:S0006-291X(15)30788-9. [PMID: 26525851 DOI: 10.1016/j.bbrc.2015.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Na Tian
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuwei Tang
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuhong Chen
- Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Zehua Zhen
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Jinhua Long
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Shuoqian Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China.
| |
Collapse
|
25
|
Li S, Li Y, Lu C, Zhang J, Zhu J, Wang H, Shen Y. Activating a Cryptic Ansamycin Biosynthetic Gene Cluster To Produce Three New Naphthalenic Octaketide Ansamycins with n-Pentyl and n-Butyl Side Chains. Org Lett 2015; 17:3706-9. [PMID: 26167742 DOI: 10.1021/acs.orglett.5b01686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genome mining is a rational approach to discovering new natural products. The genome sequence analysis of Streptomyces sp. LZ35 revealed the presence of a putative ansamycin gene cluster (nam). Constitutive overexpression of the pathway-specific transcriptional regulatory gene nam1 successfully activated the nam gene cluster, and three novel naphthalenic octaketide ansamycins were discovered with unprecedented n-pentylmalonyl-CoA or n-butylmalonyl-CoA extender units. This study represents the first example of discovering novel ansamycin scaffolds via activation of a cryptic gene cluster.
Collapse
Affiliation(s)
- Shanren Li
- †Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- †Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chunhua Lu
- †Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Juanli Zhang
- †Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jing Zhu
- ‡State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haoxin Wang
- ‡State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yuemao Shen
- †Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China.,‡State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
26
|
Chang C, Huang R, Yan Y, Ma H, Dai Z, Zhang B, Deng Z, Liu W, Qu X. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds. J Am Chem Soc 2015; 137:4183-90. [PMID: 25763681 DOI: 10.1021/jacs.5b00728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.
Collapse
Affiliation(s)
- Chenchen Chang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Rong Huang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Yan Yan
- ‡State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongmin Ma
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Zheng Dai
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Benying Zhang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Wen Liu
- ‡State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xudong Qu
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
27
|
Bioengineering and semisynthesis of an optimized cyclophilin inhibitor for treatment of chronic viral infection. ACTA ACUST UNITED AC 2015; 22:285-92. [PMID: 25619934 PMCID: PMC4336584 DOI: 10.1016/j.chembiol.2014.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Inhibition of host-encoded targets, such as the cyclophilins, provides an opportunity to generate potent high barrier to resistance antivirals for the treatment of a broad range of viral diseases. However, many host-targeted agents are natural products, which can be difficult to optimize using synthetic chemistry alone. We describe the orthogonal combination of bioengineering and semisynthetic chemistry to optimize the drug-like properties of sanglifehrin A, a known cyclophilin inhibitor of mixed nonribosomal peptide/polyketide origin, to generate the drug candidate NVP018 (formerly BC556). NVP018 is a potent inhibitor of hepatitis B virus, hepatitis C virus (HCV), and HIV-1 replication, shows minimal inhibition of major drug transporters, and has a high barrier to generation of both HCV and HIV-1 resistance. Optimization and preclinical analysis of a bacterial natural product Combination of bioengineering and semisynthetic chemistry Preclinical analysis revealing potent antiviral activity
Collapse
|
28
|
Lawen A. Biosynthesis of cyclosporins and other natural peptidyl prolyl cis/trans isomerase inhibitors. Biochim Biophys Acta Gen Subj 2014; 1850:2111-20. [PMID: 25497210 DOI: 10.1016/j.bbagen.2014.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Peptidyl-prolyl-cis/trans-isomerases (PPIases) are ubiquitously expressed and have been implicated in a wide range of biological functions. Their inhibition is beneficial in immunosuppression, cancer treatment, treatment of autoimmune diseases, protozoan and viral infections. SCOPE OF REVIEW Three classes of PPIases are known, each class having their own specific inhibitors. This review will cover the present knowledge on the biosynthesis of the natural PPIase inhibitors. These include for the cyclophilins: the cyclosporins, the analogues of peptolide SDZ 214-103 and the sanglifehrins; for the FKBPs: ascomycin, rapamycin and FK506 and for the parvulins the naphtoquinone juglone. MAJOR CONCLUSIONS Over the last thirty years much progress has been made in understanding PPIase function and the biosynthesis of natural PPIase inhibitors. Non-immunosuppressive analogues were discovered and served as lead compounds for the development of novel antiviral drugs. There are, however, still unsolved questions which deserve further research into this exciting field. GENERAL SIGNIFICANCE As all the major natural inhibitors of the cyclophilins and FKBPs are synthesized by complex non-ribosomal peptide synthetases and/or polyketide synthases, total chemical synthesis is not a viable option. Thus, fully understanding the modular enzyme systems involved in their biosynthesis may help engineering enzymes capable of synthesizing novel PPIase inhibitors with improved functions for a wide range of conditions. This article is part of a Special Issue entitled Proline-directed Foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
29
|
Fernández J, Marín L, Alvarez-Alonso R, Redondo S, Carvajal J, Villamizar G, Villar CJ, Lombó F. Biosynthetic modularity rules in the bisintercalator family of antitumor compounds. Mar Drugs 2014; 12:2668-99. [PMID: 24821625 PMCID: PMC4052310 DOI: 10.3390/md12052668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/05/2022] Open
Abstract
Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.
Collapse
Affiliation(s)
- Javier Fernández
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Laura Marín
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Raquel Alvarez-Alonso
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Saúl Redondo
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Juan Carvajal
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Germán Villamizar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Claudio J Villar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Felipe Lombó
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| |
Collapse
|
30
|
Du Y, Wang Y, Huang T, Tao M, Deng Z, Lin S. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol 2014; 14:30. [PMID: 24506891 PMCID: PMC3943440 DOI: 10.1186/1471-2180-14-30] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C₁₅ acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. RESULTS A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. CONCLUSIONS The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
31
|
Baltz RH. MbtH homology codes to identify gifted microbes for genome mining. ACTA ACUST UNITED AC 2014; 41:357-69. [DOI: 10.1007/s10295-013-1360-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
Abstract
Abstract
Advances in DNA sequencing technologies have made it possible to sequence large numbers of microbial genomes rapidly and inexpensively. In recent years, genome sequencing initiatives have demonstrated that actinomycetes with large genomes generally have the genetic potential to produce many secondary metabolites, most of which remain cryptic. Since the numbers of new and novel pathways vary considerably among actinomycetes, and the correct assembly of secondary metabolite pathways containing type I polyketide synthase or nonribosomal peptide synthetase (NRPS) genes is costly and time consuming, it would be advantageous to have simple genetic predictors for the number and potential novelty of secondary metabolite pathways in targeted microorganisms. For secondary metabolite pathways that utilize NRPS mechanisms, the small chaperone-like proteins related to MbtH encoded by Mycobacterium tuberculosis offer unique probes or beacons to identify gifted microbes encoding large numbers of diverse NRPS pathways because of their unique function(s) and small size. The small size of the mbtH-homolog genes makes surveying large numbers of genomes straight-forward with less than ten-fold sequencing coverage. Multiple MbtH orthologs and paralogs have been coupled to generate a 24-mer multiprobe to assign numerical codes to individual MbtH homologs by BLASTp analysis. This multiprobe can be used to identify gifted microbes encoding new and novel secondary metabolites for further focused exploration by extensive DNA sequencing, pathway assembly and annotation, and expression studies in homologous or heterologous hosts.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting 7636 Andora Drive 34238 Sarasota FL USA
| |
Collapse
|
32
|
Du YL, Dalisay DS, Andersen RJ, Ryan KS. N-carbamoylation of 2,4-diaminobutyrate reroutes the outcome in padanamide biosynthesis. ACTA ACUST UNITED AC 2013; 20:1002-11. [PMID: 23911586 DOI: 10.1016/j.chembiol.2013.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/05/2013] [Accepted: 06/25/2013] [Indexed: 01/07/2023]
Abstract
Padanamides are linear tetrapeptides notable for the absence of proteinogenic amino acids in their structures. In particular, two unusual heterocycles, (S)-3-amino-2-oxopyrrolidine-1-carboxamide (S-Aopc) and (S)-3-aminopiperidine-2,6-dione (S-Apd), are found at the C-termini of padanamides A and B, respectively. Here we identify the padanamide biosynthetic gene cluster and carry out systematic gene inactivation studies. Our results show that padanamides are synthesized by highly dissociated hybrid nonribosomal peptide synthetase/polyketide synthase machinery. We further demonstrate that carbamoyltransferase gene padQ is critical to the formation of padanamide A but dispensable for biosynthesis of padanamide B. Biochemical investigations show that PadQ carbamoylates the rare biosynthetic precursor l-2,4-diaminobutyrate, generating l-2-amino-4-ureidobutyrate, the presumed precursor to the C-terminal residue of padanamide A. By contrast, the C-terminal residue of padanamide B may derive from glutamine. An unusual thioesterase-catalyzed cyclization is proposed to generate the S-Aopc/S-Apd heterocycles.
Collapse
Affiliation(s)
- Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
33
|
Walsh CT, O'Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed Engl 2013; 52:7098-124. [PMID: 23729217 PMCID: PMC4634941 DOI: 10.1002/anie.201208344] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 12/24/2022]
Abstract
Freestanding nonproteinogenic amino acids have long been recognized for their antimetabolite properties and tendency to be uncovered to reactive functionalities by the catalytic action of target enzymes. By installing them regiospecifically into biogenic peptides and proteins, it may be possible to usher a new era at the interface between small molecule and large molecule medicinal chemistry. Site-selective protein functionalization offers uniquely attractive strategies for posttranslational modification of proteins. Last, but not least, many of the amino acids not selected by nature for protein incorporation offer rich architectural possibilities in the context of ribosomally derived polypeptides. This Review summarizes the biosynthetic routes to and metabolic logic for the major classes of the noncanonical amino acid building blocks that end up in both nonribosomal peptide frameworks and in hybrid nonribosomal peptide-polyketide scaffolds.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Walsh CT, O'Brien RV, Khosla C. Nichtproteinogene Aminosäurebausteine für Peptidgerüste aus nichtribosomalen Peptiden und hybriden Polyketiden. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Wang P, Gao X, Tang Y. Complexity generation during natural product biosynthesis using redox enzymes. Curr Opin Chem Biol 2012; 16:362-9. [PMID: 22564679 PMCID: PMC3415589 DOI: 10.1016/j.cbpa.2012.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Redox enzymes such as FAD-dependent and cytochrome P450 oxygenases play indispensible roles in generating structural complexity during natural product biosynthesis. In the pre-assembly steps, redox enzymes can convert garden variety primary metabolites into unique starter and extender building blocks. In the post-assembly tailoring steps, redox cascades can transform nascent scaffolds into structurally complex final products. In this review, we will discuss several recently characterized redox enzymes in the biosynthesis of polyketides and nonribosomal peptides.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
36
|
Neumann CS, Jiang W, Heemstra JR, Gontang EA, Kolter R, Walsh CT. Biosynthesis of piperazic acid via N5-hydroxy-ornithine in Kutzneria spp. 744. Chembiochem 2012; 13:972-6. [PMID: 22522643 DOI: 10.1002/cbic.201200054] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 11/10/2022]
Abstract
Which came first? We have investigated the biosynthesis of the piperazic acid (Piz) building blocks in the kutzneride family of metabolites. The flavin-dependent oxygenase KtzI was shown to convert ornithine to N(5)-OH-Orn. LC-MS/MS showed (13)C(5)-labeled versions of these two amino acids to be direct precursors of piperazic acid in vivo.
Collapse
Affiliation(s)
- Christopher S Neumann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 2011; 58:21-33. [DOI: 10.1007/s00294-011-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/01/2023]
|
38
|
Quade N, Huo L, Rachid S, Heinz DW, Müller R. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat Chem Biol 2011; 8:117-24. [DOI: 10.1038/nchembio.734] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/21/2011] [Indexed: 11/09/2022]
|
39
|
Wilson MC, Moore BS. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 2011; 29:72-86. [PMID: 22124767 DOI: 10.1039/c1np00082a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the emerging biosynthetic role of crotonyl-CoA carboxylase/reductase (CCR) homologs in extending the structural and functional diversity of polyketide natural products. CCRs catalyze the reductive carboxylation of α,β-unsaturated acyl-CoA substrates to produce a variety of substituted malonyl-CoA derivatives employed as polyketide synthase extender units. Here we discuss the history of CCRs in both primary and secondary metabolism, the mechanism by which they function, examples of new polyketide diversity from pathway specific CCRs, and the role of CCRs in facilitating the bioengineering novel polyketides.
Collapse
Affiliation(s)
- Micheal C Wilson
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
40
|
Qu X, Lei C, Liu W. Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. Angew Chem Int Ed Engl 2011; 50:9651-4. [PMID: 21948600 DOI: 10.1002/anie.201103085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/30/2011] [Indexed: 01/08/2023]
Affiliation(s)
- Xudong Qu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China
| | | | | |
Collapse
|
41
|
Qu X, Lei C, Liu W. Transcriptome Mining of Active Biosynthetic Pathways and Their Associated Products in Streptomyces flaveolus. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Kang Q, Bai L, Deng Z. Toward steadfast growth of antibiotic research in China: from natural products to engineered biosynthesis. Biotechnol Adv 2011; 30:1228-41. [PMID: 21930196 DOI: 10.1016/j.biotechadv.2011.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 11/30/2022]
Abstract
Antibiotics are widely used for clinical treatment and preventing or curing diseases in agriculture. Cloning and studies of their biosynthetic gene clusters are vital for yield enhancement and engineering new derivatives with new and prominent activities. In recent years, research in this aspect is impressively active in China. This article reviews biosynthetic progress on 28 antibiotics, including polyketides, nonribosomal peptides, hybrid polyketide-nonribosomal peptides, peptidyl nucleoside, nucleoside, and others. Their biosynthetic mechanisms were disclosed, and their derivatives with new structures/activities were obtained by gene inactivation, mutasynthesis and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Qianjin Kang
- State key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
43
|
Zhang W, Ames BD, Walsh CT. Identification of phenylalanine 3-hydroxylase for meta-tyrosine biosynthesis. Biochemistry 2011; 50:5401-3. [PMID: 21615132 DOI: 10.1021/bi200733c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenylalanine hydroxylase (PheH) is an iron(II)-dependent enzyme that catalyzes the hydroxylation of aromatic amino acid l-phenylalanine (L-Phe) to l-tyrosine (L-Tyr). The enzymatic modification has been demonstrated to be highly regiospecific, forming proteinogenic para-Tyr (p-Tyr) exclusively. Here we biochemically characterized the first example of a phenylalanine 3-hydroxylase (Phe3H) that catalyzes the synthesis of meta-Tyr (m-Tyr) from Phe. Subsequent mutagenesis studies revealed that two residues in the active site of Phe3H (Cys187 and Thr202) contribute to C-3 rather than C-4 hydroxylation of the phenyl ring. This work sets the stage for the mechanistic and structural study of regiospecific control of the substrate hydroxylation by PheH.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|