1
|
Eliaz D, Kellersztein I, Miali ME, Benyamin D, Brookstein O, Daraio C, Wagner HD, Raviv U, Shimanovich U. Fine Structural Analysis of Degummed Fibroin Fibers Reveals Its Superior Mechanical Capabilities. CHEMSUSCHEM 2025; 18:e202401148. [PMID: 39023515 PMCID: PMC11696198 DOI: 10.1002/cssc.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Bombyx mori silk fibroin fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the asymmetrical cross-sectional area (CSA) as a perfect circle. The thermal treatments impact not only the mechanics of the degummed fibroin fibers, but also the structural configuration of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength, by increasing the extent of the fibers' crystallinity, by approximately 40 % and 50 %, respectively, without compromising their strain. Furthermore, we have shown that this treatment facilitated further production of high-purity soluble silk protein with rheological and self-assembly characteristics comparable to those of native silk feedstock, initially stored in the animal's silk gland. The developed approaches benefits both the development of silk-based materials with tailored properties and the proper mechanical characterization of asymmetrical fibrous biological materials made of natural building blocks.
Collapse
Affiliation(s)
- D. Eliaz
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
- Present address: SilkIt Ltd.Ness Ziona7403626Israel
| | - I. Kellersztein
- Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaCalifornia91125USA
| | - M. E. Miali
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - D. Benyamin
- Institute of ChemistryThe Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram9190401JerusalemIsrael
- Present address: Department of Physics of Complex SystemsWeizmann Institute of Science7610001RehovotIsrael
| | - O. Brookstein
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - C. Daraio
- Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaCalifornia91125USA
| | - H. D. Wagner
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - U. Raviv
- Institute of ChemistryThe Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram9190401JerusalemIsrael
| | - U. Shimanovich
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| |
Collapse
|
2
|
Parvin F, Larsson JNK, Jackson WS, Nyström S, Hammarström P. Efficient Seeding of Cerebral Vascular Aβ-Amyloidosis by Recombinant AβM1-42 Amyloid Fibrils. J Mol Biol 2024; 437:168923. [PMID: 39725269 DOI: 10.1016/j.jmb.2024.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Aβ-amyloid plaques and cerebral amyloid angiopathy (CAA) in the brain are pathological hallmarks of Alzheimer's disease (AD) and vascular dementia. The spreading of Aβ amyloidosis in the brain appears to be mediated by a seeding mechanism, where preformed fibrils (called seeds) accelerate Aβ fibril formation by bypassing the rate-determining nucleation step. Several studies have demonstrated that Aβ amyloidosis can be induced in transgenic mice, producing human Aβ, by injecting Aβ-rich brain extracts (seeds) derived from transgenic mice and human AD brains. However, studies on recombinant seeds are limited. Therefore, we investigated the seeding activity of pure recombinant human Aβ fibrils of different compositions. Seeds were inoculated into APP23 mice at the age of 3 months and were analyzed after 6 months of incubation. Recombinant fibril seeds made from Aβ-peptides with an N-terminal methionine (i.e. (preformed fibrils from AβM1-42, AβM1-40, and AβM1-40 + AβM1-42) accelerated Aβ-amyloid plaque formation in vivo compared to non-inoculated transgenic control mice of the same age. In addition, all seeds induced CAA pathology. Interestingly, AβM1-42 containing seeds produced significantly more CAA and amyloid plaques than seeds containing pure AβM1-40, which was surprising given that APP23 mice produce approximately four-fold more Aβ1-40 substrate than Aβ1-42. This study showed that AβM1-42 fibrils are highly potent in seeding CAA and implies that conformational templating occurs in amyloid plaque as deduced by comparative amyloid ligand staining. Our results verify that recombinant Aβ fibrils are transmissible amyloids, and that in vivo seeding can accelerate, and redirect Aβ amyloidosis patterns compared to spontaneous age dependent amyloidosis.
Collapse
Affiliation(s)
- Farjana Parvin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Johan N K Larsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
3
|
Shabnam, Bhat R. Flavones Suppress Aggregation and Amyloid Fibril Formation of Human Lysozyme under Macromolecular Crowding Conditions. Biochemistry 2024; 63:3194-3212. [PMID: 39385522 DOI: 10.1021/acs.biochem.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The crowded milieu of a biological cell significantly impacts protein aggregation and interactions. Understanding the effects of macromolecular crowding on the aggregation and fibrillation of amyloidogenic proteins is crucial for the treatment of many amyloid-related disorders. Most in vitro studies of protein amyloid formation and its inhibition by small molecules are conducted in dilute buffers, which do not mimic the complexity of the cellular environment. In this study, we used PEGs to simulate macromolecular crowding and examined the inhibitory effects of flavones DHF, baicalein, and luteolin on human lysozyme (HuL) aggregation at pH 2. Naturally occurring flavones have been effective inhibitors of amyloid formation in some proteins. Our findings indicate that while flavones inhibit HuL aggregation and fibrillation in dilute buffer solutions, complete inhibition is observed with a combination of flavones and PEGs, as shown by ThT fluorescence, light scattering, TEM, and AFM studies. The species formed in the presence of PEG 8000 and flavones were less hydrophobic, less toxic, and α-helix-rich compared to control samples, which were hydrophobic and β-sheet-rich, as demonstrated by ANS hydrophobicity, MTT assay, and CD spectroscopy. Fluorescence titration studies of flavones with HuL showed a significant increase in binding constant values under crowding conditions. These findings highlight the importance of macromolecular crowding in modulating protein aggregation and amyloid inhibition. Further studies using disease-causing mutants of HuL and other amyloidogenic proteins are needed to explore the role of macromolecular crowding in small-molecule-mediated modulation and inhibition of protein aggregation and amyloid formation.
Collapse
Affiliation(s)
- Shabnam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| |
Collapse
|
4
|
Siri M, Vázquez-Dávila M, Sotelo Guzman C, Bidan CM. Nutrient availability influences E. coli biofilm properties and the structure of purified curli amyloid fibers. NPJ Biofilms Microbiomes 2024; 10:143. [PMID: 39632887 PMCID: PMC11618413 DOI: 10.1038/s41522-024-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Bacterial biofilms are highly adaptable and resilient to challenges. Nutrient availability can induce changes in biofilm growth, architecture and mechanical properties. Their extracellular matrix plays an important role in achieving biofilm stability under different environmental conditions. Curli amyloid fibers are critical for the architecture and stiffness of E. coli biofilms, but how this major matrix component adapts to different environmental cues remains unclear. We investigated, for the first time, the effect of nutrient availability both on biofilm material properties and on the structure and properties of curli amyloid fibers extracted from similar biofilms. Our results show that biofilms grown on low nutrient substrates are stiffer, contain more curli fibers, and these fibers present higher β-sheet content and chemical stability. Our multiscale study sheds new light on the relationship between bacterial matrix molecular structure and biofilm macroscopic properties. This knowledge will benefit the development of both anti-biofilm strategies and biofilm-based materials.
Collapse
Affiliation(s)
- Macarena Siri
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
- Max Planck Queensland Centre, Potsdam, Germany.
| | - Mónica Vázquez-Dávila
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Carolina Sotelo Guzman
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
- Max Planck Queensland Centre, Potsdam, Germany.
| |
Collapse
|
5
|
Chatterjee S, Gupta T, Kaur G, Chattopadhyay K. Pyroptotic executioner pore-forming protein gasdermin D forms oligomeric assembly and exhibits amyloid-like attributes that could contribute for its pore-forming function. Biochem J 2024; 481:1679-1705. [PMID: 39503596 DOI: 10.1042/bcj20240416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Gasdermin D (GSDMD) is the chief executioner of inflammatory cell death or pyroptosis. During pyroptosis, proteolytic processing of GSDMD releases its N-terminal domain (NTD), which then forms large oligomeric pores in the plasma membranes. Membrane pore-formation by NTD allows the release of inflammatory cytokines and causes membrane damage to induce cell death. Structural mechanisms of GSDMD-mediated membrane pore-formation have been extensively studied. However, less effort has been made to understand the physicochemical properties of GSDMD and their functional implications. Here, we explore detailed characterization of the physicochemical properties of mouse GSDMD (mGSDMD), and their implications in regulating the pore-forming function. Our study reveals that mGSDMD shows some of the hallmark features of amyloids, and forms oligomeric assemblies in solution that are critically dependent on the disulfide bond-forming ability of the protein. mGSDMD oligomeric assemblies do not resemble typical amyloid fibrils/aggregates, and do not show resistance to proteolytic degradation that is otherwise observed with the conventional amyloids. Our results further elucidate the essential role of an amyloid-prone region (APR) in the oligomerization and amyloid-like features of mGSDMD. Furthermore, alteration of this APR leads to compromised pore-forming ability and cell-killing activity of NTD released from mGSDMD. Taken together, our study for the first time provides crucial new insights regarding implications of the amyloid-like property of mGSDMD in regulating its pore-forming function, which is an essential requirement for this pyroptotic executioner. To the best of our knowledge, such mode of regulation of mGSDMD-function has not been appreciated so far.
Collapse
Affiliation(s)
- Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Gurvinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Johansson L, Sandberg A, Nyström S, Hammarström P, Hallbeck M. Amyloid beta 1-40 and 1-42 fibril ratios and maturation level cause conformational differences with minimal impact on autophagy and cytotoxicity. J Neurochem 2024; 168:3308-3322. [PMID: 39133499 DOI: 10.1111/jnc.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
The amyloid β (Aβ) peptide has a central role in Alzheimer's disease (AD) pathology. The peptide length can vary between 37 and 49 amino acids, with Aβ1-42 being considered the most disease-related length. However, Aβ1-40 is also found in Aβ plaques and has shown to form intertwined fibrils with Aβ1-42. The peptides have previously also shown to form different fibril conformations, proposed to be related to disease phenotype. To conduct more representative in vitro experiments, it is vital to uncover the impact of different fibril conformations on neurons. Hence, we fibrillized different Aβ1-40:42 ratios in concentrations of 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 for either 24 h (early fibrils) or 7 days (aged fibrils). These were then characterized based on fibril width, LCO-staining and antibody-staining. We further challenged differentiated neuronal-like SH-SY5Y human cells with the different fibrils and measured Aβ content, cytotoxicity and autophagy function at three different time-points: 3, 24, and 72 h. Our results revealed that both Aβ1-40:42 ratio and fibril maturation affect conformation of fibrils. We further show the impact of these conformation changes on the affinity to commonly used Aβ antibodies, primarily affecting Aβ1-40 rich aggregates. In addition, we demonstrate uptake of the aggregates by neuronally differentiated human cells, where aggregates with higher Aβ1-42 ratios generally caused higher cellular levels of Aβ. These differences in Aβ abundance did not cause changes in cytotoxicity nor in autophagy activation. Our results show the importance to consider conformational differences of Aβ fibrils, as this can have fundamental impact on Aβ antibody detection. Overall, these insights underline the need for further exploration of the impact of conformationally different fibrils and the need to reliably produce disease relevant Aβ aggregates.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Alexander Sandberg
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Li JY, Zhou CM, Jin RL, Song JH, Yang KC, Li SL, Tan BH, Li YC. The detection methods currently available for protein aggregation in neurological diseases. J Chem Neuroanat 2024; 138:102420. [PMID: 38626816 DOI: 10.1016/j.jchemneu.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Ke-Chao Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
8
|
Stepanchuk AA, Stys PK. Spectral Fluorescence Pathology of Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:898-908. [PMID: 38407017 DOI: 10.1021/acschemneuro.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
10
|
Siri M, Mangiarotti A, Vázquez-Dávila M, Bidan CM. Curli Amyloid Fibers in Escherichia coli Biofilms: The Influence of Water Availability on their Structure and Functional Properties. Macromol Biosci 2024; 24:e2300234. [PMID: 37776075 DOI: 10.1002/mabi.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Escherichia coli biofilms consist of bacteria embedded in a self-produced matrix mainly made of protein fibers and polysaccharides. The curli amyloid fibers found in the biofilm matrix are promising versatile building blocks to design sustainable bio-sourced materials. To exploit this potential, it is crucial to understand i) how environmental cues during biofilm growth influence the molecular structure of these amyloid fibers, and ii) how this translates at higher length scales. To explore these questions, the effect of water availability during biofilm growth on the conformation and functions of curli is studied. Microscopy and spectroscopy are used to characterize the amyloid fibers purified from biofilms grown on nutritive substrates with different water contents, and micro-indentation to measure the rigidity of the respective biofilms. The purified curli amyloid fibers present differences in the yield, structure, and functional properties upon biofilm growth conditions. Fiber packing and β-sheets content correlate with their hydrophobicity and chemical stability, and with the rigidity of the biofilms. This study highlights how E. coli biofilm growth conditions impact curli structure and functions contributing to macroscopic materials properties. These fundamental findings infer an alternative strategy to tune curli structure, which will ultimately benefit engineering hierarchical and functional curli-based materials.
Collapse
Affiliation(s)
- Macarena Siri
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476, Potsdam, Germany
| | - Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Department of Sustainable and Bio-inspired Materials, 14476, Potsdam, Germany
| | - Mónica Vázquez-Dávila
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476, Potsdam, Germany
| | - Cécile M Bidan
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476, Potsdam, Germany
| |
Collapse
|
11
|
Huo Y, Zhao C, Wang Y, Wang S, Mu T, Du W. Roles of Apigenin and Nepetin in the Assembly Behavior and Cytotoxicity of Prion Neuropeptide PrP106-126. ACS Chem Neurosci 2024; 15:245-257. [PMID: 38133816 DOI: 10.1021/acschemneuro.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Development of potential inhibitors to prevent prion protein (PrP) fibrillation is a therapeutic strategy for prion diseases. The prion neuropeptide PrP106-126, a research model of abnormal PrP (PrPSc), presents similar physicochemical and biochemical characters to PrPSc, which is also a target of potential inhibitors against prion deposition. Many flavones have antioxidant, anti-inflammatory, and antibacterial properties, and they are applied in treating prion disorder and other amyloidosis as well. However, the inhibition mechanism of flavones on PrP106-126 fibrillation is still unclear. In the current work, apigenin and nepetin were used to suppress the aggregation of PrP106-126 and to alleviate the peptide-induced cytotoxicity. The results showed that apigenin and nepetin impeded the fibril formation of PrP106-126 and depolymerized the preformed fibrils. They were bound to PrP106-126 predominantly by hydrophobic and hydrogen bonding interactions. In addition, both flavones upregulated cell viability and decreased membrane leakage through reducing peptide oligomerization. The differences in inhibition and cell protection between the two small molecules were presumably attributed to the substitution of hydroxyl and methoxy groups in nepetin, which demonstrated the significant structure-function relationship of flavones with prion neuropeptide and the prospect of flavonoids as drug candidates against prion diseases.
Collapse
Affiliation(s)
- Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
12
|
Mahato J, Mukherjee R, Bose A, Mehra S, Gadhe L, Maji SK, Chowdhury A. Sensitized Emission Imaging Allows Nanoscale Surface Polarity Mapping of α-Synuclein Amyloid Fibrils. ACS Chem Neurosci 2024; 15:108-118. [PMID: 38099928 DOI: 10.1021/acschemneuro.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
When misfolded, α-Synuclein (α-Syn), a natively disordered protein, aggregates to form amyloid fibrils responsible for the neurodegeneration observed in Parkinson's disease. Structural studies revealed distinct molecular packing of α-Syn in different fibril polymorphs and variations of interprotofilament connections in the fibrillar architecture. Fibril polymorphs have been hypothesized to exhibit diverse surface polarities depending on the folding state of the protein during aggregation; however, the spatial variation of surface polarity in amyloid fibrils remains unexplored. To map the local polarity (or hydrophobicity) along α-Syn fibrils, we visualized the spectral characteristics of two dyes with distinct polarities-hydrophilic Thioflavin T (ThT) and hydrophobic Nile red (NR)─when both are bound to α-Syn fibrils. Dual-channel fluorescence imaging reveals uneven partitioning of ThT and NR along individual fibrils, implying that relatively more polar/hydrophobic patches are spread over a few hundred nanometers. Remarkably, spectrally resolved sensitized emission imaging of α-Syn fibrils provides unambiguous evidence of energy transfer from ThT to NR, implying that dyes of dissimilar polarity are in close proximity. Furthermore, spatially resolved fluorescence spectroscopy of the solvatochromic probe NR allowed us to quantitatively map the range and variation of the polarity parameter ET30 along individual fibrils. Our results suggest the existence of interlaced polar and nonpolar nanoscale domains throughout the fibrils; however, the relative populations of these patches vary considerably over larger length scales likely due to heterogeneous packing of α-Syn during fibrilization and dissimilar exposed polarities of polymorphic segments. The employed method may provide a foundation for imaging modalities of other similar structurally unresolved systems with diverse hydrophobic-hydrophilic topology.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Rajat Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Abhik Bose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| |
Collapse
|
13
|
He C, Wu CY, Li W, Xu K. Multidimensional Super-Resolution Microscopy Unveils Nanoscale Surface Aggregates in the Aging of FUS Condensates. J Am Chem Soc 2023; 145:24240-24248. [PMID: 37782826 PMCID: PMC10691933 DOI: 10.1021/jacs.3c08674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The intracellular liquid-liquid phase separation (LLPS) of biomolecules gives rise to condensates that act as membrane-less organelles with vital functions. FUS, an RNA-binding protein, natively forms condensates through LLPS and further provides a model system for the often disease-linked liquid-to-solid transition of biomolecular condensates during aging. However, the mechanism of such maturation processes, as well as the structural and physical properties of the system, remains unclear, partly attributable to difficulties in resolving the internal structures of the micrometer-sized condensates with diffraction-limited optical microscopy. Harnessing a set of multidimensional super-resolution microscopy tools that uniquely map out local physicochemical parameters through single-molecule spectroscopy, here, we uncover nanoscale heterogeneities in FUS condensates and elucidate their evolution over aging. Through spectrally resolved single-molecule localization microscopy (SR-SMLM) with a solvatochromic dye, we unveil distinct hydrophobic nanodomains at the condensate surface. Through SMLM with a fluorogenic amyloid probe, we identify these nanodomains as amyloid aggregates. Through single-molecule displacement/diffusivity mapping (SMdM), we show that such nanoaggregates drastically impede local diffusion. Notably, upon aging or mechanical shears, these nanoaggregates progressively expand on the condensate surface, thus leading to a growing low-diffusivity shell while leaving the condensate interior diffusion-permitting. Together, beyond uncovering fascinating structural arrangements and aging mechanisms in the single-component FUS condensates, the demonstrated synergy of multidimensional super-resolution approaches in this study opens new paths for understanding LLPS systems at the nanoscale.
Collapse
Affiliation(s)
- Changdong He
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chun Ying Wu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Stepanchuk AA, Stys PK. Amyloid dye pairs as spectral sensors for enhanced detection and differentiation of misfolded proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112786. [PMID: 37742497 DOI: 10.1016/j.jphotobiol.2023.112786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Protein misfolding with subsequent formation of cross-β-sheet-rich fibrils is a well-known pathological hallmark of various neurodegenerative conditions, including Alzheimer's disease (AD). Recent evidence suggests that specific protein conformations may be the primary drivers of disease progression, differentiation of which remains a challenge with conventional methods. We have previously described a unique phenomenon of light-induced fluorescence enhancement and spectral changes of the amyloid dyes K114 and BSB, and demonstrated its utility in characterizing different amyloid fibrils. In this study, we further characterize and explore the potential of photoconversion, coupled with dual-probe staining, for improved detection of heterogeneity of amyloids using silk fibers and 5xFAD mouse brain sections. BSB and K114 were paired with either Nile Red or MCAAD-3, aiming to increase the sensitivity and specificity of staining and misfolded protein detection via complementary binding and FRET. Principal component analysis of spectral data revealed significant differences between various amyloids, and was able to detect subtle amyloid pathology in the 5xFAD mouse background brain parenchyma.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
15
|
Holubová M, Kronek J, Datta S, Lobaz V, Hromádková J, Štěpánek P, Hrubý M. Amphiphilic (di-)gradient copoly(2-oxazoline)s are potent amyloid fibril formation inhibitors. Colloids Surf B Biointerfaces 2023; 230:113521. [PMID: 37634283 DOI: 10.1016/j.colsurfb.2023.113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
MOTIVATION Amyloidoses are diseases caused by the accumulation of normally soluble proteins in the form of insoluble amyloids, leading to the gradual dysfunction and failure of various organs and tissues. Inhibiting amyloid formation is therefore an important therapeutic target. HYPOTHESIS We hypothesized that mono- and di-gradient amphiphilic copolymers of hydrophilic 2-(m)ethyl-2-oxazoline and hydrophobic 2-aryl-2-oxazolines may inhibit amyloid fibril formation. EXPERIMENTS In the model system with hen egg white lysozyme (HEWL) as amyloidogenic protein we determined the effect of these polymers on the amyloid formation by making use of the thioflavin T fluorescence, transmission electron microscopy, isothermal titration calorimetry, and dynamic light scattering. FINDINGS We found that some gradient copolymers possess very potent concentration-dependent inhibitory effects on HEWL amyloid formation. Structure-activity relationship revealed that copolymers with higher ratios of aromatic monomeric units had stronger amyloid suppression effects, most plausibly due to the combination of hydrophobic and π-π interactions. The measurements also revealed that the polymers that inhibit amyloid formation most plausibly do so in the form of micelles that interact with the growing amyloid fibril ends, not with isolated HEWL molecules in solution. These findings suggest the potential use of these gradient copolymers as therapeutic agents for amyloidoses.
Collapse
Affiliation(s)
- Monika Holubová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic; Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovak Republic
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Jesenna 5, 04154 Košice, Slovakia
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
16
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
17
|
He C, Wu CY, Li W, Xu K. Multidimensional super-resolution microscopy unveils nanoscale surface aggregates in the aging of FUS condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548239. [PMID: 37503034 PMCID: PMC10369965 DOI: 10.1101/2023.07.12.548239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The intracellular liquid-liquid phase separation (LLPS) of biomolecules gives rise to condensates that act as membrane-less organelles with vital functions. FUS, an RNA-binding protein, natively forms condensates through LLPS and further provides a model system for the often disease-linked liquid-to-solid transition of biomolecular condensates during aging. However, the mechanism of such maturation processes, as well as the structural and physical properties of the system, remain unclear, partly attributable to difficulties in resolving the internal structures of the micrometer-sized condensates with diffraction-limited optical microscopy. Harnessing a set of multidimensional super-resolution microscopy tools that uniquely map out local physicochemical parameters through single-molecule spectroscopy, here we uncover nanoscale heterogeneities in the aging process of FUS condensates. Through spectrally resolved single-molecule localization microscopy (SR-SMLM) with a solvatochromic dye, we unveil distinct hydrophobic nanodomains at the condensate surface. Through SMLM with a fluorogenic amyloid probe, we identify these nanodomains as amyloid aggregates. Through single-molecule displacement/diffusivity mapping (SM d M), we show that such nanoaggregates drastically impede local diffusion. Notably, upon aging or mechanical shears, these nanoaggregates progressively expand on the condensate surface, thus leading to a growing low-diffusivity shell while leaving the condensate interior diffusion-permitting. Together, beyond uncovering fascinating nanoscale structural arrangements and aging mechanisms in the single-component FUS condensates, the demonstrated synergy of multidimensional super-resolution approaches in this study opens new paths for understanding LLPS systems.
Collapse
|
18
|
Verma G, Bhat R. The Anthocyanidin Peonidin Interferes with an Early Step in the Fibrillation Pathway of α-Synuclein and Modulates It toward Amorphous Aggregates. ACS Chem Neurosci 2023. [PMID: 37011370 DOI: 10.1021/acschemneuro.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of the dopaminergic neurons in the brain, accompanied by the accumulation of proteinaceous inclusions, Lewy bodies (LB), mainly comprised of alpha synuclein (α-syn) aggregates. The heterogeneity and the transient nature of the intermediate species formed in the α-syn fibrillation pathway have made it difficult to develop an effective therapeutic intervention. Therefore, any therapeutic molecule that could prevent as well as treat PD would be of great interest. Anthocyanidins are natural flavonoid compounds that have been shown to have neuroprotective properties and to modulate factors that cause neuronal death. Herein, we have explored the modulation and inhibition of α-syn fibrillation by the anthocyanidins cyanidin, delphinidin, and peonidin using a number of biophysical and structural tools. α-Syn fibrillation monitored using thioflavin T (ThT) fluorescence and light scattering suggested concentration dependent inhibition of α-syn fibrillation by all the three anthocyanidins. While cyanidin and delphinidin induced the formation of oligomers and small fibrillar structures of α-syn, respectively, peonidin led to the formation of amorphous aggregates, as observed by Atomic Force Microscopy (AFM). Peonidin proved to be most effective of the three anthocyanidins toward alleviating cell toxicity of SH-SY5Y neuroblastoma cells at concentrations where α-synuclein fibrillation was completely suppressed. Hence, the inhibition mechanism of peonidin was further explored by studying its interaction with α-syn using titration calorimetry and molecular docking. The results show its weak binding (in mM range) to the NAC region of α-syn through hydrogen bonding interactions. Also, circular dichroism and Raman spectroscopy revealed the structural aspects of peonidin-induced α-syn amorphous aggregates showing alpha helical structures with exposed Phe and Tyr regions. Due to the neuroprotective nature of peonidin, the findings reported here are significant and can be further explored toward developing a modifying therapy that could address both disease onset as well as the progression of PD.
Collapse
Affiliation(s)
- Geetika Verma
- School of Biotechnology Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Jayawardena BM, Menon R, Jones MR, Jones CE. Spectral Phasor Analysis of Nile Red Identifies Membrane Microenvironment Changes in the Presence of Amyloid Peptides. Cell Biochem Biophys 2023; 81:19-27. [PMID: 36203076 DOI: 10.1007/s12013-022-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
The interaction of protein and peptide amyloid oligomers with membranes is thought to be one of the mechanisms contributing to cellular toxicity. However, techniques to study these interactions in the complex membrane environment of live cells are lacking. Spectral phasor analysis is a recently developed biophysical technique that can enable visualisation and analysis of membrane-associated fluorescent dyes. When the spectral profile of these dyes changes as a result of changes to the membrane microenvironment, spectral phasor analysis can localise those changes to discrete membrane regions. In this study, we investigated whether spectral phasor analysis could detect changes in the membrane microenvironment of live cells in the presence of fibrillar aggregates of the disease-related Aβ42 peptide or the functional amyloid neurokinin B. Our results show that the fibrils cause distinct changes to the microenvironment of nile red associated with both the plasma and the nuclear membrane. We attribute these shifts in nile red spectral properties to changes in membrane fluidity. Results from this work suggest that cells have mechanisms to avoid or control membrane interactions arising from functional amyloids which have implications for how these peptides are stored in dense core vesicles. Furthermore, the work highlights the utility of spectral phasor analysis to monitor microenvironment changes to fluorescent probes in live cells.
Collapse
Affiliation(s)
- Bhawantha M Jayawardena
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Resmi Menon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia.,PYC Therapeutics, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, WA, Australia
| | - Mark R Jones
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Christopher E Jones
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia.
| |
Collapse
|
20
|
A Multichannel Fluorescent Tongue for Amyloid- β Aggregates Detection. Int J Mol Sci 2022; 23:ijms232314562. [PMID: 36498895 PMCID: PMC9739152 DOI: 10.3390/ijms232314562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Attention has been paid to the early diagnosis of Alzheimer's disease, due to the maximum benefit acquired from the early-stage intervention and treatment. However, the sensing techniques primarily depended upon for neuroimaging and immunological assays for the detection of AD biomarkers are expensive, time-consuming and instrument dependent. Here, we developed a multichannel fluorescent tongue consisting of four fluorescent dyes and GO through electrostatic and π-π interaction. The array distinguished multiple aggregation states of 1 µM Aβ40/Aβ42 with 100% prediction accuracy via 10-channel signal outputs, illustrating the rationality of the array design. Screening vital sensor elements for the simplified sensor array and the optimization of sensing system was achieved by machine learning algorithms. Moreover, our sensing tongue was able to detect the aggregation states of Aβ40/Aβ42 in serum, demonstrating the great potential of multichannel array in diagnosing the Alzheimer's diseases.
Collapse
|
21
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
22
|
Zhang P, Tan C. Cross-Reactive Fluorescent Sensor Array for Discrimination of Amyloid Beta Aggregates. Anal Chem 2022; 94:5469-5473. [PMID: 35362962 DOI: 10.1021/acs.analchem.2c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been hypothesized that misfolding and misassembly of proteins into various aggregation states contribute to several neurodegenerative diseases. For instance, amyloid beta (Aβ) aggregation is considered a major factor in Alzheimer's disease pathogenesis. Herein, a fluorescent sensor array for detecting Aβ aggregates was fabricated using two probe pairs of conjugated polyelectrolytes and organic dye molecules, PPE1-Thioflavin T (ThT) and PPESO3-Nile Red (NR). Pattern recognition was achieved by linear discriminant analysis and hierarchical clustering analysis algorithms. As a result of distinguishing among monomers and three pure aggregate species, namely oligomers, protofibrils, and fibrils, the cross-reactive sensor array was also able to monitor aggregation kinetics in various aggregate forms and distinguish between on- and off- aggregate pathways. Our study provides a convenient approach for simultaneous detection of Aβ aggregates in mixtures, which may also be applied to the analysis of other disease-related proteins that are prone to aggregates.
Collapse
Affiliation(s)
- Pangmiaomiao Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
23
|
Su D, Diao W, Li J, Pan L, Zhang X, Wu X, Mao W. Strategic Design of Amyloid-β Species Fluorescent Probes for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:540-551. [PMID: 35132849 DOI: 10.1021/acschemneuro.1c00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a high mortality and high disability rates neurodegenerative disease characterized by irreversible progression and poses a significant social and economic burden throughout the world. However, currently approved AD therapeutic agents only alleviate symptoms and there is still a lack of practical therapeutic regimens to stop or slow the progression of this disease. Thus, there is urgently needed novel diagnosis tools and drugs for early diagnosis and treatment of AD. Among several AD pathological hallmarks, amyloid-β (Aβ) peptide deposition is considered a critical initiating factor in AD. In recent years, with the advantages of excellent sensitivity and high resolution, near-infrared fluorescence (NIRF) imaging has attracted the attention of many researchers to develop Aβ plaque probes. This review mainly focused on different NIRF probe design strategies for imaging Aβ species to pave the way for the future design of novel NIRF probes for early diagnosis AD.
Collapse
Affiliation(s)
- Dunyan Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610093, P. R. China
| |
Collapse
|
24
|
Hanczyc P, Słota P, Radzewicz C, Fita P. Two-photon excited lasing for detection of amyloids in brain tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112392. [PMID: 35086026 DOI: 10.1016/j.jphotobiol.2022.112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Two-photon excitation of emissive markers with near-infrared (NIR) light is of a particular interest for imaging in biology and medicine because NIR light is relatively weakly absorbed and scattered by tissues. At the same time the mechanism of two-photon absorption allows excitation of molecules located deep inside a scattering medium. In this work we demonstrate that the two-photon excitation combined with the effect of light amplification in the stimulated emission process provides a sensitive method for detecting amyloids of different forms. We investigate the two-photon excited amplified spontaneous emission (ASE) of a fluorescent dye, coumarin 307, in the brain tissue infiltrated with various amyloid phantoms i.e. oligomers, protofibrils and mature fibrils. All these forms of amyloids can be detected by observation of ASE and determination of thresholds for light amplification. On this basis we suggest that a relatively simple extension of currently used emission-based optical spectroscopy techniques can provide key information on pathogenic amyloid structures in tissue.
Collapse
Affiliation(s)
- Piotr Hanczyc
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Przemysław Słota
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Czesław Radzewicz
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Fita
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| |
Collapse
|
25
|
Jaragh-Alhadad LA, Falahati M. Tin oxide nanoparticles trigger the formation of amyloid β oligomers/protofibrils and underlying neurotoxicity as a marker of Alzheimer's diseases. Int J Biol Macromol 2022; 204:154-160. [PMID: 35124024 DOI: 10.1016/j.ijbiomac.2022.01.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is known as one of the most common forms of dementia, and oligomerization of amyloid β (Aβ42) peptides can result in the onset of AD. Tin oxide nanoparticles (SnO2 NPs) showed several applications in biomedical fields can trigger unwanted interaction with proteins and inducing protein aggregation. Herein, we synthesized SnO2 NPs via the hydrothermal method and characterized by UV-visible, XRD, FTIR, TEM, and DLS techniques. Afterward, the formation of Aβ42 amyloid oligomers/protofibrils treated alone and with SnO2 NPs was explored by ThT and Nile red fluorescence and CD spectroscopic methods along with TEM imaging. The neurotoxicity of different spices of Aβ42 samples against PC-12 cells was then explored by MTT and caspase-3 activity assays. The characterization of SnO2 NPs confirmed the successful synthesis of crystalline NPs (20-30 nm). Different biophysical and cellular analyses indicated that SnO2 NPs accelerated Aβ42 fibrillogenesis and promoted amyloid oligomers/protofibrils cytotoxicity. As compared to the Aβ42 samples grown alone, the ThT and ANS fluorescence intensity along with ellipticity results indicated the promotory effect of SnO2 NPs on the formation of oligomers/protofibrils. Also, the cellular results showed that the treated Aβ42 samples with SnO2 NPs further reduced cell viability through activation of caspase-3. In conclusion, SnO2 NPs greatly accelerate the fibrillation of Aβ42 peptides and lead to the formation of more toxic species. The present data may offer further warrants into nano-based systems for biomedical applications in the central nervous system.
Collapse
Affiliation(s)
- Laila Abdulmohsen Jaragh-Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
26
|
Sun R, Wan W, Jin W, Bai Y, Xia Q, Wang M, Huang Y, Zeng L, Sun J, Peng C, Jing B, Liu Y. Derivatizing Nile Red Fluorophores to Quantify the Heterogeneous Polarity upon Protein Aggregation in the Cell. Chem Commun (Camb) 2022; 58:5407-5410. [DOI: 10.1039/d2cc00629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein aggregation in the cell is often manifested by the formation of subcellular punctate structures. Herein, we modulated the solvatochromism and solubity of Nile Red fluorophore derivatives to quantitatively study...
Collapse
|
27
|
Trusova V, Tarabara U, Zhytniakivska O, Vus K, Gorbenko G. Fӧrster resonance energy transfer analysis of amyloid state of proteins. BBA ADVANCES 2022; 2:100059. [PMID: 37082586 PMCID: PMC10074846 DOI: 10.1016/j.bbadva.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The Förster resonance energy transfer (FRET) is a well-established and versatile spectroscopic technique extensively used for exploring a variety of biomolecular interactions and processes. The present review is intended to cover the main results of our FRET studies focused on amyloid fibrils, a particular type of disease-associated protein aggregates. Based on the examples of several fibril-forming proteins including insulin, lysozyme and amyloidogenic variants of N-terminal fragment of apolipoprotein A-I, it was demonstrated that: (i) the two- and three-step FRET with the classical amyloid marker Thioflavin T as an input donor has a high amyloid-sensing potential and can be used to refine the amyloid detection assays; (ii) the intermolecular time-resolved and single-molecule pulse interleaved excitation FRET can give quantitative information on the nucleation of amyloid fibrils; (iii) FRET between the membrane fluorescent probes and protein-associated intrinsic or extrinsic fluorophores is suitable for monitoring the membrane binding of fibrillar proteins, exploring their location relative to lipid-water interface and restructuring on a lipid matrix; (iv) the FRET-based distance estimation between fibril-bound donor and acceptor fluorophores can serve as one of the verification criteria upon structural modeling of amyloid fibrils.
Collapse
|
28
|
Bera A, Mukhopadhyay D, Goswami K, Ghosh P, De R, De P. Fatty Acid-Based Polymeric Micelles to Ameliorate Amyloidogenic Disorders. Biomater Sci 2022; 10:3466-3479. [PMID: 35670569 DOI: 10.1039/d2bm00359g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop anti-amyloidogenic inhibitors for ameliorating the treatment of diabetes, herein, we have synthesized amphiphilic block copolymers with side-chain fatty acid (FA) moieties via reversible addition fragmentation chain-transfer (RAFT) polymerization....
Collapse
Affiliation(s)
- Avisek Bera
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Debangana Mukhopadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, Basantapur, NH-34 connector, Kalyani - 741245, Nadia, West Bengal, India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Rumi De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
29
|
Zhytniakivska O, Kurutos A, Shchuka M, Vus K, Tarabara U, Trusova V, Gorbenko G. Fӧrster resonance energy transfer between Thioflavin T and unsymmetrical trimethine cyanine dyes on amyloid fibril scaffold. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
4‐(2‐Hydroxyethyl)‐1‐piperazine ethane sulfonic acid repositioning: Amyloid disaggregating agent and its
sustained‐release
system. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Bera A, Sahoo S, Goswami K, Das SK, Ghosh P, De P. Modulating Insulin Aggregation with Charge Variable Cholic Acid-Derived Polymers. Biomacromolecules 2021; 22:4833-4845. [PMID: 34674527 DOI: 10.1021/acs.biomac.1c01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the effect of cholic acid (CA)-based charge variable polymeric architectures on modulating the insulin aggregation process, herein, we have designed side-chain cholate-containing charge variable polymers. Three different types of copolymers from 2-(methacryloyloxy)ethyl cholate with anionic or cationic or neutral units have been synthesized by reversible addition-fragmentation chain transfer polymerization. The effects of these copolymers on the insulin fibrillation process was studied by multiple biophysical approaches including different types of spectroscopic and microscopic analyses. Interestingly, the CA-based cationic polymer (CP-10) was observed to inhibit the insulin fibrillation process in a dose-dependent manner and to act as an effective anti-amyloidogenic agent. Corresponding anionic (AP-10) and neutral (NP-10) copolymers with cholate pendants remained insignificant in controlling the aggregation process. Tyrosine fluorescence assays and Nile red fluorescence measurements demonstrate the role of hydrophobic interaction to explain the inhibitory potencies of CP-10. Furthermore, circular dichroism spectroscopic measurements were carried out to explore the secondary structural changes of insulin fibrils in the presence of cationic polymers with and without cholate moieties. Isothermal titration calorimetry measurements revealed the involvement of electrostatic polar interaction between the CA-based cationic polymer and insulin at different stages of fibrillation. Overall, this work demonstrates the efficacy of the CA-based cationic polymer in controlling the insulin aggregation process and provides a novel dimension to the studies on protein aggregation.
Collapse
Affiliation(s)
- Avisek Bera
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Kalyan Goswami
- Department of Biochemistry, AIIMS, Kalyani, Basantapur, NH-34 Connector, Kalyani 741245, Nadia, West Bengal, India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine & JNM Hospital, WBUHS, Kalyani 741235, Nadia, West Bengal, India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
32
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
33
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self-Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021; 60:18838-18844. [PMID: 34185371 PMCID: PMC8456905 DOI: 10.1002/anie.202107034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Light-induced molecular piping of cyclic peptide nanotubes to form bent tubular structures is described. The process is based on the [4+4] photocycloaddition of anthracene moieties, whose structural changes derived from the interdigitated flat disposition of precursors to the corresponding cycloadduct moieties, induced the geometrical modifications in nanotubes packing that provokes their curvature. For this purpose, we designed a new class of cyclic peptide nanotubes formed by β- and α-amino acids. The presence of the former predisposes the peptide to stack in a parallel fashion with the β-residues aligned along the nanotube and the homogeneous distribution of anthracene pendants.
Collapse
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
34
|
Gorbenko G, Zhytniakivska O, Vus K, Tarabara U, Trusova V. Three-step Förster resonance energy transfer on an amyloid fibril scaffold. Phys Chem Chem Phys 2021; 23:14746-14754. [PMID: 34195724 DOI: 10.1039/d1cp01359a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study provides evidence that the energy transfer chain consisting of the benzothiazole dye Thioflavin T as an input donor, a phosphonium dye TDV and a squaraine dye SQ4 as mediators, and one of the three squaraines SQ1/2/3 as an output acceptor displays an excellent amyloid-sensing ability when applied to differentiating between the amyloid and non-fibrillized states of insulin. The ensemble of fluorophores offers the advantages of a large effective Stokes shift (∼240 nm), well-resolved 3D fluorescence patterns and strong enhancement of the terminal fluorescence (up to two orders of magnitude). The occurrence of multistep energy transfer on an amyloid fibril scaffold opens new possibilities for the more sensitive detection of fibrillar protein assemblies and their applications in nanophotonics.
Collapse
Affiliation(s)
- Galyna Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Olga Zhytniakivska
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Kateryna Vus
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Uliana Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Valeriya Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| |
Collapse
|
35
|
Naftaly A, Izgilov R, Omari E, Benayahu D. Revealing Advanced Glycation End Products Associated Structural Changes in Serum Albumin. ACS Biomater Sci Eng 2021; 7:3179-3189. [PMID: 34143596 DOI: 10.1021/acsbiomaterials.1c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural alterations in proteins have a significant impact on their function and body physiology. Glycation via nonenzymatic forms of cross-linking leads to proteins' conformational changes, the macromolecule being recognized as a stable fibrillary structure, oligomerization, and becoming advanced glycation end products (AGEs). Protein that undergoes glycation-related modifications, namely, β-sheet enriched structural changes, are recognized as amyloid. In the current study, we characterized a single protein modified in vitro under physiological conditions to represent a protein glycation model. The glycation altered the helical conformation of serum albumin (SA) and promoted the formation of a β-sheet enriched with amyloid fibrils detected at multidimensional levels. The nanoscale resolution by spectroscopy in the presence of thioflavin-T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (8-ANS) showed binding of the fibrils formed in the presence of glucose (GLU) and the carbonyl metabolites methylglyoxal (MGO) and glycolaldehyde (GAD). In the presence of MGO and GAD, the SA becomes insoluble aggregates, demonstrated by TEM microscopy and dynamic light scattering (DLS). The protein oligomerization was visualized when separated via SDS gel electrophoresis and mass photometry (MP) assays. Following the glycation, eventually, the material polymerized and became stiffer. The level of stiffness was analyzed by a rheometer that revealed a quick alteration under MGO and GAD. This is the first study to combine multiple spectroscopy assays, imaging, and rheology measurements of SA and to demonstrate a resolution on a nanoscale structural toward better resolution of the conformational changes of glycated SA, oligomerization, and protein aggregations under physiological conditions.
Collapse
Affiliation(s)
- Alex Naftaly
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Roza Izgilov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Eman Omari
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
36
|
An J, Jangili P, Lim S, Kim YK, Verwilst P, Kim JS. Multichromatic fluorescence towards aberrant proteinaceous aggregates utilizing benzimidazole-based ICT fluorophores. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01085-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Holubová M, Lobaz V, Loukotová L, Rabyk M, Hromádková J, Trhlíková O, Pechrová Z, Groborz O, Štěpánek P, Hrubý M. Does polysaccharide glycogen behave as a promoter of amyloid fibril formation at physiologically relevant concentrations? SOFT MATTER 2021; 17:1628-1641. [PMID: 33355589 DOI: 10.1039/d0sm01884h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the influence of glycogen (GG), phytoglycogen (PG), mannan (MAN) and cinnamoyl-modified GG (GG-CIN) on amyloid fibril formation. We used hen egg-white lysozyme (HEWL) as a model system and amyloid beta peptide (1-42) (Aβ1-42) as an Alzheimer's disease-relevant system. For brief detection of fibrils was used thioflavin T (ThT) fluorescence assay and the results were confirmed by transmission electron microscopy (TEM). We also deal with the interaction of polysaccharides and HEWL with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). We found that all polysaccharides accelerated the formation of amyloid fibrils from both HEWL and Aβ1-42. At high but physiologically relevant concentrations of GG, amyloid fibril formation was extremely accelerated for HEWL. Therefore, on the basis of the herein presented in vitro data, we hypothesize, that dietary d-glucose intake may influence amyloid fibril formation not only by influencing regulatory pathways, but also by direct glycogen-amyloid precursor protein molecular interaction, as glycogen levels in tissues are highly dependent on d-glucose intake.
Collapse
Affiliation(s)
- Monika Holubová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic. and Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Zdislava Pechrová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Ondřej Groborz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic. and Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
38
|
Gokula RP, Mahato J, Tripathi A, Singh HB, Chowdhury A. Self-Assembly of Nicotinic Acid-Conjugated Selenopeptides into Mesotubes. ACS APPLIED BIO MATERIALS 2021; 4:1912-1919. [PMID: 35014460 DOI: 10.1021/acsabm.0c01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of controlling the morphology for designing advanced supramolecular architectures by tuning the molecular motif at the elemental level has been rarely carried out. Here, we report the synthesis of a nicotinic acid-conjugated selenopeptide, which induced the formation of an unbranched mesoscale elongated tubular morphology. We rationally designed two additional peptides to find out the decisive role played by the nitrogen atom (in nicotinic acid) and selenium (in the peptide backbone) toward the formation of the mesotube. We found that the peptide, devoid of nitrogen, forms a fibrillar structure, whereas the peptide without selenium self-assembled into a cylindrical filled rodlike morphology. Here, we report an entirely different class of peptide inspired from the selenopeptide chemistry that forms a tubular structure and unambiguously establish that both nicotinic acid and selenium are essential toward the formation of such mesotubes.
Collapse
Affiliation(s)
- Ram P Gokula
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
39
|
González-Freire E, Novelli F, Pérez-Estévez A, Seoane R, Amorín M, Granja JR. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. Chemistry 2021; 27:3029-3038. [PMID: 32986280 DOI: 10.1002/chem.202004127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/25/2023]
Abstract
A new class of amphipathic cyclic peptides, which assemble in bacteria membranes to form polymeric supramolecular nanotubes giving them antimicrobial properties, is described. The method is based on the use of two orthogonal clickable transformations to incorporate different hydrophobic or hydrophilic moieties in a simple, regioselective, and divergent manner. The resulting cationic amphipathic cyclic peptides described in this article exhibit strong antimicrobial properties with a broad therapeutic window. Our studies suggest that the active form is the nanotube resulted from the parallel stacking of the cyclic peptide precursors. Several techniques, CD, FTIR, fluorescence, and STEM, among others, confirm the nanotube formation.
Collapse
Affiliation(s)
- Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Pérez-Estévez
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rafael Seoane
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
40
|
Hornum M, Mulberg MW, Szomek M, Reinholdt P, Brewer JR, Wüstner D, Kongsted J, Nielsen P. Substituted 9-Diethylaminobenzo[ a]phenoxazin-5-ones (Nile Red Analogues): Synthesis and Photophysical Properties. J Org Chem 2021; 86:1471-1488. [PMID: 33370098 DOI: 10.1021/acs.joc.0c02346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nile Red is a benzo[a]phenoxazone dye containing a diethylamino substituent at the 9-position. In recent years, it has become a popular histological stain for cellular membranes and lipid droplets due to its unrivaled fluorescent properties in lipophilic environments. This makes it an attractive lead for chemical decoration to tweak its attributes and optimize it for more specialized microscopy techniques, e.g., fluorescence lifetime imaging or two-photon excited fluorescence microscopy, to which Nile Red has never been optimized. Herein, we present synthesis approaches to a series of monosubstituted Nile Red derivatives (9-diethylbenzo[a]phenoxazin-5-ones) starting from 1-naphthols or 1,3-naphthalenediols. The solvatochromic responsiveness of these fluorophores is reported with focus on how the substituents affect the absorption and emission spectra, luminosity, fluorescence lifetimes, and two-photon absorptivity. Several of the analogues emerge as strong candidates for reporting the polarity of their local environment. Specifically, the one- and two-photon excited fluorescence of Nile Red turns out to be very responsive to substitution, and the spectroscopic features can be finely tuned by judiciously introducing substituents of distinct electronic character at specific positions. This new toolkit of 9-diethylbenzo[a]phenoxazine-5-ones constitutes a step toward the next generation of optical molecular probes for advancing the understanding of lipid structures and cellular processes.
Collapse
|
41
|
Li L, Lv Z, Man Z, Xu Z, Wei Y, Geng H, Fu H. Polarity-active NIR probes with strong two-photon absorption and ultrahigh binding affinity of insulin amyloid fibrils. Chem Sci 2021; 12:3308-3313. [PMID: 34164100 PMCID: PMC8179388 DOI: 10.1039/d0sc03907a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid fibrils are associated with many neurodegenerative diseases. In situ and in vivo visualization of amyloid fibrils is important for medical diagnostics and requires fluorescent probes with both excitation and emission wavelengths in the far-red and NIR region, and simultaneously with high binding-affinity to amyloid fibrils and the ability to cross the blood-brain barrier, which, however, remain a challenge. Here, we rationally design and synthesize an excellent polarity-sensitive two-photon excited NIR fluorophore (TZPI) based on a donor (D)-acceptor (A)-ion compound. The electron-rich carbazole group and the ionic pyridinium bromide group, linked by an electron-poor π-conjugated benzothiadiazole group, ensure strong near infrared (NIR) emission. Furthermore, the lipophilic carbazole together with the benzothiadiazole group facilitates docking of the probe in the hydrophobic domains of amyloid aggregates with the dissociation constant K d = 20 nM and 13.5-fold higher binding affinity to insulin fibrils than the commercial probe ThT. On association with the amyloid fibrils, the tiny decrease in polarity leads to a large increase in its NIR emission intensity with an on-off ratio > 10; meanwhile, the TZPI probe exhibits a quantum yield of up to 30% and two-photon absorption cross-section values of up to 467.6 GM at 890 nm. Moreover, the application of TZPI in two-photon imaging is investigated. The ultrahigh binding affinity, the strong NIR emission, the good two-photon absorption properties, the high photo-stability, the appropriate molecular mass of 569 Da and the lipophilicity with log P = 1.66 ± 0.1 to cross the BBB make TZPI promising as an ideal candidate for detecting amyloid plaques in vivo.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
- Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University Tianjin 300072 China
| | - Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
| | - YuLing Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University Beijing 100048 China
- Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University Tianjin 300072 China
| |
Collapse
|
42
|
|
43
|
Chowdhury S, Kumar S. Inhibition of BACE1, MAO-B, cholinesterase enzymes, and anti-amyloidogenic potential of selected natural phytoconstituents: Multi-target-directed ligand approach. J Food Biochem 2020; 45:e13571. [PMID: 33249607 DOI: 10.1111/jfbc.13571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and multiple factors are involved in disease progression. This is why there is an urgent need to develop novel molecules with multi-target-directed ligands (MTDLs) potential. The current study explores the active phytoconstituents from traditionally used medicinal spices, namely piperine, cinnamaldehyde, eugenol, cuminaldehyde, and alpha-terpinyl acetate for the inhibition of β-secretase, monoamine oxidase, cholinesterase enzymes, anti-aggregation of amyloid β (Aβ) fibrils, and their protective effect against hydrogen peroxide (H2 O2 ) and Aβ-induced toxicity. Eugenol showed inhibitory activity against MAO-B enzyme, free radical scavenging activity, and anti-aggregation activity against Aβ peptides than other phytoconstituents. It also demonstrated a significant cytoprotective effect against H2 O2 -induced oxidative stress and Aβ-induced cytotoxicity in pheochromocytoma (PC) 12 cells. A molecular docking study of eugenol showed interactions with active site residue of the target enzymes. The study successfully demonstrated that eugenol could have an MTDLs potential better than synthesized drugs used in the treatment of AD. PRACTICAL APPLICATIONS: The present study demonstrated multi-target-directed ligand potential of eugenol and can be developed to treat complex diseases like Alzheimer's. Eugenol can bind to different Alzheimer's targets such as β-secretase (BACE1), Monoamine oxidase B (MAO-B), Cholinesterase's, and amyloid β1-42 fibrils and might have a disease-modifying potential. The other natural phytoconstituents such as piperine, cinnamaldehyde, cuminaldehyde, and alpha-terpinyl acetate also demonstrated MTDL potential could also be used for developing novel molecules for disease-modifying effect. It also protects against oxidative stress.
Collapse
Affiliation(s)
- Suman Chowdhury
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
44
|
Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins. Biophys Chem 2020; 264:106422. [PMID: 32707418 DOI: 10.1016/j.bpc.2020.106422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Intrinsically disordered proteins (IDPs) comprise ~30-40% of the proteome, have key roles in cellular processes, and have been reported to be involved in stress regulation working in synergy with osmolytes. Osmolytes are known to accumulate against various stresses in living systems and are known to stabilize the native conformation of globular proteins. However, little is known of their effect on IDPs and their mechanism of action is unclear. We have investigated the effect of a series of polyol osmolytes on the conformation, aggregation and fibrillation properties of the IDPs α and β-synuclein, involved in Parkinson's disease, using fluorescence, CD, light scattering and TEM. We observe inhibition of fibril and aggregate formation with increasing concentration as well as the number of hydroxyl groups in polyols as observed by light scattering measurements which correlates well with the increase in viscosity of solution with increasing number of OH groups in them. However, ThT assay, while indicating suppression of fibril formation at various concentrations of polyols, shows enhanced fibrillation at some other concentrations which could be due to the heterogeneity of the species formed that are ThT insensitive. Fibril formation was, thus, probed by using Nile red fluorescence which showed sensitivity towards the species formed. ANS binding fluorescence also indicates a decrease in the hydrophobicity of the fibrils with increasing number of OH groups in polyols. Polyols do not have any effect on the fibrillation of β-syn but lead to enhanced amorphous aggregate formation in presence of Ethylene Glycol and Glycerol and a reduction in the presence of Sorbitol. The net free energy of transfer of the proteins from water to Sorbitol is large and positive while it is relatively negligible in the case of Glycerol suggestive of greater preferential exclusion effect of Sorbitol in comparison with Glycerol in the case of IDPs as well. The results overall show differential and complex effect of osmolytes towards the fibrillation/aggregation properties of the two IDPs and suggest that an appropriate balance between the concentration and type of polyol or osmolyte would be required for the survival of organisms rich in IDPs under various stress conditions.
Collapse
|
45
|
Pandey SP, Singh PK. Basic Orange 21: A molecular rotor probe for fluorescence turn-on sensing of amyloid fibrils. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Wang H, Zhang J, Dou F, Chen Z. A near-infrared fluorescent probe quinaldine red lights up the β-sheet structure of amyloid proteins in mouse brain. Biosens Bioelectron 2020; 153:112048. [PMID: 32056662 DOI: 10.1016/j.bios.2020.112048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 01/15/2023]
Abstract
In this report, we describe a near-infrared fluorescent probe called quinaldine red (QR) which lights up the β-sheet structure of amyloid fibrils. The photochemical and biophysical properties of QR along with other canonical amyloid probes in the presence of protein fibrils were investigated by using fluorescence spectroscopy, confocal fluorescent microscopy and isothermal titration calorimetry. Moreover, the binding sites and interaction mode between QR and insulin fibrils were calculated based on molecule docking. Among these amyloid probes, QR showed several advantages including strong supramolecular force, near-infrared emission, high sensitivity and resistance to bleaching. A linear response of the fluorescence intensity of QR towards fibril samples in the presence of sera was visualized in the range of 1-30 μM, with the limit of detection (LOD) of 2.31 μM. The recovery and relative standard deviation (RSD) of the proposed method for the determination of protein fibrils was 90.4%-99.2% and 3.05%-3.47%, respectively. Finally, QR can be fluorescently lighted up when meeting the aberrant protein aggregates of pathogenic mice. We recommend QR as a novel and excellent alternative tool for monitoring conformational transition of amyloid proteins.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China
| | - Jianxiang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and Beijing Key Laboratory of Genetic Engineering Drugs & Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, PR China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and Beijing Key Laboratory of Genetic Engineering Drugs & Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, PR China.
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China.
| |
Collapse
|
47
|
L. Almeida Z, M. M. Brito R. Structure and Aggregation Mechanisms in Amyloids. Molecules 2020; 25:molecules25051195. [PMID: 32155822 PMCID: PMC7179426 DOI: 10.3390/molecules25051195] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of the approximately 50 amyloid diseases described to date. The identification and characterization of the molecular species critical for amyloid formation and disease development have been the focus of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational therapeutic approaches against these debilitating and increasingly frequent misfolding diseases requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade. Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides from a kinetic and thermodynamic point of view, the structure of the molecular species involved in the amyloidogenic process, and the origin of their cytotoxicity.
Collapse
|
48
|
Du Z, Yu D, Du X, Scott P, Ren J, Qu X. Self-triggered click reaction in an Alzheimer's disease model: in situ bifunctional drug synthesis catalyzed by neurotoxic copper accumulated in amyloid-β plaques. Chem Sci 2019; 10:10343-10350. [PMID: 32110322 PMCID: PMC6984331 DOI: 10.1039/c9sc04387j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
Cu is one of the essential elements for life. Its dyshomeostasis has been demonstrated to be closely related to neurodegenerative disorders, such as Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) aggregation and Cu accumulation. It is a great challenge as to how to take advantage of neurotoxic Cu to fight disease and make it helpful. Herein, we report that the accumulated Cu in Aβ plaques can effectively catalyze an azide-alkyne bioorthogonal cycloaddition reaction for fluorophore activation and drug synthesis in living cells, a transgenic AD model of Caenorhabditis elegans CL2006, and brain slices of triple transgenic AD mice. More importantly, the in situ synthesized bifunctional drug 6 can disassemble Aβ-Cu aggregates by extracting Cu and photo-oxygenating Aβ synergistically, suppressing Aβ-mediated paralysis and diminishing the locomotion defects of the AD model CL2006 strain. Our results demonstrate that taking the accumulated Cu ions in the Aβ plaque for an in situ click reaction can achieve both a self-triggered and self-regulated drug synthesis for AD therapy. To the best of our knowledge, a click reaction catalyzed by local Cu in a physiological environment has not been reported. This work may open up a new avenue for in situ multifunctional drug synthesis by using endogenous neurotoxic metal ions for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
- University of Science and Technology of China , Hefei , Anhui 230029 , China
| | - Xiubo Du
- College of Life Sciences and Oceanography , Shenzhen Key Laboratory of Microbial Genetic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Peter Scott
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| |
Collapse
|
49
|
Gorbenko G, Trusova V, Deligeorgiev T, Gadjev N, Mizuguchi C, Saito H. Two-step FRET as a tool for probing the amyloid state of proteins. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183107. [PMID: 31678022 DOI: 10.1016/j.bbamem.2019.183107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Roya Khosravi-Far
- BiomaRx Inc, Cambridge, MA, USA; Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|