1
|
Behera PC, Karmakar V, Ghosh A, Dey S, Rangra NK, Bag B. Anti-cancer potential of substituted "amino-alkyl-rhodamine" derivatives against MCF-7 human breast cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1001-1007. [PMID: 36595094 DOI: 10.1007/s00210-022-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most prevalent diagnosed cancer among women and the main cause of morbidity and mortality. As for breast cancer, MCF-7 cells are an important candidate since they are widely utilized in research for estrogen receptor (ER)-positive breast cancer cell assays, and various sub-clones have been identified to reflect different classes of ER-positive tumors with varied levels of nuclear receptor expression. Rhodamines and its derivatives have shown a great interest over the past two decades due to their excellent structural and spectroscopic properties. Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties. Rhodamine derivatives, in particular, have been widely investigated for their therapeutic properties. In this regard, several studies have shown that rhodamine dye derivatives have promising in vitro and in vivo therapeutic efficacy. The present study deals with potential anticancer activity of few synthesized rhodamine derivatives against MCF-7 cell lines.
Collapse
Affiliation(s)
- Padma Charan Behera
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India.
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat, 700126, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India
| | - Suddhasatya Dey
- Department of Pharmacy, Sanaka Educational Trusts Group of Institutions, Durgapur, 713212, West Bengal, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal-Kalan, GT Road, Moga, 142001, PB, India
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L, Bhubaneswar, 751013, Odisha, India.
| |
Collapse
|
2
|
Battula H, Nath M, Mishra S, Jayanty S. Spirocyclic rhodamine B benzoisothiazole derivative: a multi-stimuli fluorescent switch manifesting ethanol-responsiveness, photo responsiveness, and acidochromism. RSC Adv 2023; 13:5134-5148. [PMID: 36777943 PMCID: PMC9910283 DOI: 10.1039/d2ra08022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Multi-stimuli fluorescent switching materials have been extensively employed in chemistry, biochemistry, physics, and materials science. Although rhodamine-based spirolactams have been specifically considered for metal ion sensing by photoluminescence, only some of them manifest photochromic behavior, and further development of rhodamine B (RHB)-based photochromic materials is required. RHB and its cyclic amides are advantageous in various sensing applications owing to their colorimetric responses to external stimulation. Hence, the current work reports a novel multifunctional active molecular material (3',6'-bis(diethylamino))-2-(5-nitrobenzo[c]isothiazol-3-yl)spiro[isoindoline-1,9'-xanthen]-3-one (RHBIT) by linking rhodamine B with 3-amino,5-nitro[2,1]benzoisothiazole (ANB) in a facile synthetic pathway; that perceives both emission color change and switching between off-on states. RHBIT shows acidochromism, photochromism, and pH sensitivity accompanied by unique ethanol responsiveness, with potential applications in anti-counterfeiting and drug delivery. Notably, RHBIT is highly acid sensitive and reverts to the ring-closed form on treatment with triethylamine (base), visible with the naked eye amidst colorless-pink-colorless transformations. On short UV irradiation, RHBIT provides a two-fold rise in the lifetime for the ring-open form in CHCl3 and DCM compared to the spirolactam (closed form). DFT and TDDFT studies provide electronic characterization for the absorption spectra of the open and closed forms. Using the photoresponsive feature of RHBIT, an information protection application has been enacted via a rewritable platform.
Collapse
Affiliation(s)
- Himabindu Battula
- Department of Chemistry, Birla Institute of Technology and Science Pilani-Hyderabad Campus, Jawaharnagar, Shameerpet, Kapra Mandal, Medchal Dist. Hyderabad-500078 Telangana State India +91-040-66303998 +91-40-66303561
| | - Moromi Nath
- Department of Chemistry, Indian Institute of TechnologyKharagpur-721302India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of TechnologyKharagpur-721302India
| | - Subbalakshmi Jayanty
- Department of Chemistry, Birla Institute of Technology and Science Pilani-Hyderabad Campus, Jawaharnagar, Shameerpet, Kapra Mandal, Medchal Dist. Hyderabad-500078 Telangana State India +91-040-66303998 +91-40-66303561
| |
Collapse
|
3
|
Kumar P, Ghosh A, Jose DA. Chemical Sensors for Water Detection in Organic Solvents and their Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202003920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pawan Kumar
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra Kurukshetra 136119 Haryana India
| | - Amrita Ghosh
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra Kurukshetra 136119 Haryana India
| | - D. Amilan Jose
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra Kurukshetra 136119 Haryana India
| |
Collapse
|
4
|
Rajasekaran D, Venkatachalam K, Periasamy V. A bisphenol based fluorescence chemosensor for the selective detection of Zn 2+ and PPi ions and its bioluminescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118730. [PMID: 32738760 DOI: 10.1016/j.saa.2020.118730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
A bisphenol based fluorescence "turn-on" chemosensor 4,4'-(propane-2,2-diyl)bis(2-((E)-(2-(benzo[d]thiazol-2-yl)hydrazineyldene)methyl)phenol) (BHMP) has been synthesized and its sensing behavior was tested towards various ionic species. The chemo-sensing behavior of BHMP has been established through absorption, fluorescence, NMR, and mass spectroscopic techniques. The probe BHMP selectively detects zinc ions over other metal ions and the resulting BHMP + Zn2+ ensemble serves as a secondary probe for the detection of pyrophosphate (PPi) anion specifically over other anions. The spectroscopic studies reveal the fluorescence enhancement of BHMP in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi) anions. A probable mechanism of this selective sensing behavior was described on the basis of "OFF-ON-OFF" strategy for detection of both cations and anions. Moreover, the biological applicability of the chemosensor BHMP was examined via cell imaging studies.
Collapse
|
5
|
Mehta R, Luxami V. Rhodamine-anthraquinone based dyad for rapid and selective sensing of Al3+ with potential application for real-time sampling and molecular logic circuits. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Zhou Y, Yan LQ, Kong ZN, Du WQ, Wu BY, Qi ZJ. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1608153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Chung K, Yang DS, Jung J, Seo D, Kwon MS, Kim J. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28124-28129. [PMID: 27668520 DOI: 10.1021/acsami.6b07020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.
Collapse
Affiliation(s)
- Kyeongwoon Chung
- Engineering Ceramics Department, Korea Institute of Materials Science (KIMS) , Changwon, Gyeongsangnamdo 641-831, South Korea
| | | | | | | | - Min Sang Kwon
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, South Korea
| | | |
Collapse
|
8
|
Hung CC, Kuo CC, Weng NK, Wu WC, Chen BY, Cho CJ, Hsu IJ, Chiu YC, Chen WC. Novel highly sensitive and reversible electrospun nanofibrous chemosensor-filters composed of poly(HEMA-co-MNA) and bpy-F-bpy with metal-ion-modulated multicolor fluorescence emission. Polym J 2016. [DOI: 10.1038/pj.2015.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
A Tris(hydroxymethyl)aminomethane-Rhodamine Spirolactam Derivative as Dual Channel pH and Water Sensor and Its Application to Bio Imaging. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Pal S, Mukherjee M, Sen B, Lohar S, Chattopadhyay P. Development of a rhodamine–benzimidazol hybrid derivative as a novel FRET based chemosensor selective for trace level water. RSC Adv 2014. [DOI: 10.1039/c4ra02585g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A newly designed FRET-based rhodamine–benzimidazol hybrid molecule has been developed as a dual channel chemosensor for the detection of trace level water in both protic and aprotic organic solvents.
Collapse
Affiliation(s)
| | | | - Buddhadeb Sen
- Department of Chemistry
- Burdwan University
- Burdwan, India
| | | | | |
Collapse
|
11
|
Biswal B, Bag B. Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(II) ion and their FRET mediated signaling. Org Biomol Chem 2013; 11:4975-92. [PMID: 23783407 DOI: 10.1039/c3ob40648b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metal ion induced absorption and emission signaling pattern of rhodamine coupled bis-(aminopropyl)-piperazine (1-3) and (aminoethyl)-piperazine (4) based probes evaluated in MeCN as well as in an MeCN-H2O binary mixture medium revealed that these probes exhibit optical signaling perturbations to a varying extent in MeCN, however, their complexation induced signaling could be tuned selectively towards Hg(II) in the presence of an aqueous component in the solvent medium where competitive interactions such as metal-probe interactions and hydration of metal ions play the determining factor to induce aqueous promoted Hg(II) selectivity. Attachment of another fluorophore (anthracene and nitrobenzofurazan moieties in 2 and 3 respectively) at the other end of the rhodamine coupled bis-(aminopropyl)-piperazine receptor enabled these probes to facilitate a complexation induced fluorescence resonance energy transfer (FRET) from the excited fluorophore to the ring-opened rhodamine along with contributions through operative PET inhibition and rhodamine delactonization processes. The enhancement in absorption transition of these probes at ~557 nm upon selective Hg(II)-complexation and consequent colourless to pink colour change in the solution imply a chromogenic signaling pattern whereas simultaneous fluorescence amplification and/or FRET initiation lead to fluorogenic signaling to facilitate detection at lower concentration. The Hg(II)-selective photo-physical spectral modulation in the presence of other competitive metal ions, and their reversible dual channel signaling pattern under the action of counter anions or chelating agents such as EDTA or ethylenediamine establish the potential of these probes for highly selective, sensitive and reversible 'OFF-ON-OFF' detection of Hg(II). The complexation induced optical signaling pattern of probes with a propyl-linker in their receptor (1-3) in comparison with that of 4 consisting of an ethyl-spacer indicate that signaling probe design with a substituted 'aminoalkyl-lactonized-rhodamine' subunit preferentially exhibit Hg(II) selective and sensitive dual mode signaling in an organic-aqueous mixture medium irrespective of carbon-length of the flexible alkyl spacer.
Collapse
Affiliation(s)
- Biswonath Biswal
- Colloids and Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L., Bhubaneswar-751 013, Odisha, India
| | | |
Collapse
|
12
|
Men G, Zhang G, Liang C, Liu H, Yang B, Pan Y, Wang Z, Jiang S. A dual channel optical detector for trace water chemodosimetry and imaging of live cells. Analyst 2013; 138:2847-57. [DOI: 10.1039/c3an36887d] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Rathinam B, Chien CC, Chen BC, Liu JH. Fluorogenic and chromogenic detection of Cu2+ and Fe3+ species in aqueous media by rhodamine–triazole conjugate. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Li H, Guan H, Duan X, Hu J, Wang G, Wang Q. An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam. Org Biomol Chem 2013; 11:1805-9. [DOI: 10.1039/c3ob27356c] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Pal A, Bag B. Hg(II) ion specific dual mode signalling in a thiophene derivatized rhodamine based probe and their complexation cooperativity. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Bag B, Pal A. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(ii) ion. Org Biomol Chem 2011; 9:4467-80. [DOI: 10.1039/c0ob01179g] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|