1
|
Yuan Z, Jiang Q, Liang G. Inspired by nature: Bioluminescent systems for bioimaging applications. Talanta 2025; 281:126821. [PMID: 39255622 DOI: 10.1016/j.talanta.2024.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Bioluminescence is a natural process where biological organisms produce light through chemical reactions. These reactions predominantly occur between small-molecule substrates and luciferase within bioluminescent organisms. Bioluminescence imaging (BLI) has shown significant potential in biomedical research owing to its non-invasive, real-time observation and quantification. In this review, we introduced the chemical mechanism of bioluminescent systems and categorized several strategies that successfully addressed the native limitations, including improvements on the chemical structures of luciferase-luciferin bioluminescence system and bioluminescence resonance energy transfer (BRET) methods. In addition, we also reviewed and summarized recent advances in bioimaging applications. We hope that this review can provide effective guidance for the development and application of bioluminescent systems in the field of bioimaging.
Collapse
Affiliation(s)
- Zihan Yuan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Handan Norman Technology Co., Ltd., Guantao, 057750, China.
| |
Collapse
|
2
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Rad-Faraji M, Mousazadeh M, Nikkhah M, Rezaei A, Moradi S, Hosseinkhani S. A comparative study of structural and catalytic activity alterations in firefly luciferase induced by carbon quantum dots containing amine and carboxyl functional groups. Int J Biol Macromol 2024; 260:129503. [PMID: 38244744 DOI: 10.1016/j.ijbiomac.2024.129503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Despite of growing interest in use of carbon-based nanomaterials as carriers of functional proteins, less attention has been paid to the effects of these nanomaterials on the structure and function of the proteins. In this study, with the aim of shedding light on the mechanisms of interaction between carbon-based nanomaterials and proteins, the interactions of carbon quantum dots (CQDs) containing amine (CQD-NH2) or carboxyl groups (CQD-COOH) with Photinus pyralis firefly luciferase enzyme were investigated by experimental and computational approaches. The structural changes and reduction in activity of the luciferase upon treatment with CQDs were experimentally proved. CQD-NH2 induced more reduction in enzyme activity (15 %) compared to CQD-COOH (7.4 %). The interactions CQD-NH2 with luciferase led to higher affinity of the enzyme for its substrate. It was found by molecular dynamic simulations that CQD-NH2 binds to multiple regions on the surface of luciferase. Secondary structure analysis showed that CQD-NH2 had more profound effects on the active site amino acids, the adjacent amino acids to the active site and the residues involved in ATP binding site. In addition, CQD-NH2 interactions with luciferase were suggested to be stronger than CQD-COOH based on the number of hydrogen bonds and the binding energies.
Collapse
Affiliation(s)
- Mehrnaz Rad-Faraji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran.
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
4
|
Sato S, Ariga H, Maita H. Development of a Cell-Based Assay Using a Split-Luciferase Reporter for Compound Screening. Biol Pharm Bull 2023; 46:1010-1014. [PMID: 37394631 DOI: 10.1248/bpb.b23-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Recently, the finding of recurrent mutations in the spliceosome components in cancer has indicated that the spliceosome is a potential target for cancer therapy. However, the number of small molecules known to affect the cellular spliceosome is currently limited probably because of the lack of a robust cell-based approach to identify small molecules that target the spliceosome. We have previously reported the development of a genetic reporter to detect the cellular levels of small nuclear ribonucleoproteins (snRNPs), which are subunits of the spliceosome, using a split luciferase. However, the original protocol was designed for small scale experiments and was not suitable for compound screening. Here, we found that the use of cell lysis buffer used in blue native polyacrylamide gel electrophoresis (BN-PAGE) dramatically improved the sensitivity and the robustness of the assay. Improved assay conditions were used to discover a small molecule that altered the reporter activity. Our method may be used with other cellular macromolecular complexes and may assist in the discovery of small bioactive molecules.
Collapse
Affiliation(s)
- Satoshi Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University
- Graduate School of Life Science, Hokkaido University
| | - Hiroshi Maita
- Faculty of Pharmaceutical Sciences, Hokkaido University
- Graduate School of Life Science, Hokkaido University
| |
Collapse
|
5
|
Karimi E, Nikkhah M, Hosseinkhani S. Label-Free and Bioluminescence-Based Nano-Biosensor for ATP Detection. BIOSENSORS 2022; 12:918. [PMID: 36354427 PMCID: PMC9687858 DOI: 10.3390/bios12110918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A bioluminescence-based assay for ATP can measure cell viability. Higher ATP concentration indicates a higher number of living cells. Thus, it is necessary to design an ATP sensor that is low-cost and easy to use. Gold nanoparticles provide excellent biocompatibility for enzyme immobilization. We investigated the effect of luciferase proximity with citrate-coated gold, silver, and gold-silver core-shell nanoparticles, gold nanorods, and BSA-Au nanoclusters. The effect of metal nanoparticles on the activity of luciferases was recorded by the luminescence assay, which was 3-5 times higher than free enzyme. The results showed that the signal stability in presence of nanoparticles improved and was reliable up to 6 h for analytes measurements. It has been suggested that energy is mutually transferred from luciferase bioluminescence spectra to metal nanoparticle surface plasmons. In addition, we herein report the 27-base DNA aptamer for adenosine-5'-triphosphate (ATP) as a suitable probe for the ATP biosensor based on firefly luciferase activity and AuNPs. Due to ATP application in the firefly luciferase reaction, the increase in luciferase activity and improved detection limits may indicate more stability or accessibility of ATP in the presence of nanoparticles. The bioluminescence intensity increased with the ATP concentration up to 600 µM with a detection limit of 5 µM for ATP.
Collapse
|
6
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
7
|
Wang Y, Chang Y, Jia R, Sun H, Tian J, Luo H, Yu H, Shen Z. SpyTag/SpyCatcher cyclization and covalent immobilization in enhancing cephalosporin C acylase stability. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Rezaeian Marjani L, Imani M, Zarei Jaliani H. Enhancement of Pharmaceutical Urate Oxidase Thermostability by Rational Design of De Novo Disulfide Bridge. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2662. [PMID: 33850949 PMCID: PMC8035418 DOI: 10.30498/ijb.2020.2662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background and Purpose As a therapeutic enzyme, urate oxidase is utilized in the reduction of uric acid in various conditions such as gout or tumor syndrome lysis. However, even bearing kinetical advantage over other counterparts, it suffers from structural instability most likely due to its subcellular and fungal origin. Objectives In this research, by using rational design and introduction of de novo disulfide bridge in urate oxidase structure, we designed and created a thermostable urate oxidase for the first time. Materials and Methods Utilizing site-directed mutagenesis and only with one point mutation we constructed two separate mutants: Ala6Cys and Ser282Cys which covalently linked subunits of enzyme each other. Single mutation to cysteine created three inter-chain disulfide bridges and one hydrogen bond in Ala6Cys and two disulfide bridges in Ser282Cys. Results Both mutants showed 10 °C increase in optimum activity compared to wild-type enzyme while the Km values for both increased by 50% and their specific activity compromised. The thermal stability of Ser282Cys increased remarkably by comparing Ala6Cys and wild-type enzymes. Estimation of half life for wild-type enzyme demonstrated 38.5 min, while for Ala6Cys and Ser282Cys were 138 and 115 min, respectively. Interestingly, the optimal pH of both mutants was broaden from 7 to 10, which could make them candidates for industrial applications. Conclusion It seemed that introducing disulfide bridges resulted in local and overall rigidity by bringing two adjacent sites of enzyme together and decreasing the conformational entropy of unfolding state is responsible for the enhancement of thermostability.
Collapse
Affiliation(s)
- Leila Rezaeian Marjani
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Mehdi Imani
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism. J Biosci 2020. [DOI: 10.1007/s12038-020-00026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Jahangirizadeh Z, Ghafouri H, Sajedi RH, Sariri R, Hossienkhani S. Rapid and simple screening of the apoptotic compounds based on Hsp70 inhibition using luciferase as an intracellular reporter. Anal Bioanal Chem 2020; 412:149-158. [PMID: 31897564 DOI: 10.1007/s00216-019-02220-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/08/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
HSP70 is a powerful antiapoptotic protein that can block the extrinsic and intrinsic pathways of apoptosis. The present study describes a rapid, sensitive, and inexpensive system using luciferase as a reporter for the functional analysis of apoptotic compounds. For this approach, the co-transformation of Escherichia coli cells was performed with two expression vectors containing Hsp70 and firefly luciferase. It was found that the luciferase inactivated by heat treatment (40-46 °C for 10 min) was approximately reactivated at room temperature and regained 70% of its initial activity before heat inactivation after 60 min. The results show that the reactivation of thermally inactivated luciferase was inhibited in living cells by treatment with VER-155008 and pifitrin-μ as Hsp70 inhibitors, with half-maximal inhibitory concentration of 124 and 384 μM, respectively. The sensitivity of this method for detecting VER-155008 and pifitrin-μ was about 8 and 25 μM, respectively. Also, this reporter system showed no response to doxorubicin and dactinomycin, which bind to DNA, and we used these anticancer compounds as control compounds. Therefore, for the first time, a rapid and simple real-time system using luciferase as a reporter is introduced for the screening of apoptosis-inducing compounds based on suppression of Hsp70 in E. coli cells.
Collapse
Affiliation(s)
- Zohreh Jahangirizadeh
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Saman Hossienkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
11
|
Salehi-Sedeh H, Ataei F, Jarchi S, Hamidi R, Hosseinkhani S. Effect of mutation at positively charged residues (K329 and R330) in a flexible region of firefly luciferase on structure and kinetic properties. Enzyme Microb Technol 2019; 131:109424. [PMID: 31615672 DOI: 10.1016/j.enzmictec.2019.109424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022]
Abstract
Firefly luciferase as a bioluminescent enzyme has many applications in various fields from scientific research to commercial goals. This enzyme is relatively unstable with low functional capacity due to rapid inactivation in physiological temperature, low in vitro stability and high susceptibility to proteolytic degradation. Based on previous studies, two regions 206-220 and 329-341 on N-domain of Photinus pyralis luciferase are known accessible and flexible. Flexible regions may lead to protein instability. Here, the effect of mutation at positively charged residues Lys(K)329 and Arg(R)330 on the stability of luciferase was studied. Furthermore, the role of these mutations on the structure and function was evaluated. Introducing of these point mutations did not affect the orientation of critical residues in bioluminescence color determination. The kinetic studies showed that thermostability and Km value for luciferin in both mutants were decreased as compared to wild type. However, optimum pH and optimum temperature showed no significant changes in both mutants. Moreover, the structural data revealed an increase in tryptophan fluorescence intensity and secondary structure content for R330Q in compared with wild type, while intrinsic fluorescence and far-UV CD intensity in K329I mutant was decreased.
Collapse
Affiliation(s)
- Hossein Salehi-Sedeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samaneh Jarchi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roghaye Hamidi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Genomic and protein structure analysis of the luciferase from the Iranian bioluminescent beetle, Luciola sp. Int J Biol Macromol 2018; 124:689-698. [PMID: 30502432 DOI: 10.1016/j.ijbiomac.2018.11.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022]
Abstract
To date, two Iranian luciferase genes from the Lampyris turkestanicus and Lampyroidea maculata have been carefully studied. Here, we report the cloning and characterization of the gene and protein of luciferase enzyme from the beetle of an Iranian lampyrid species, Luciola sp. (Coleoptera-Lampyridae). In this study, a Luciola sp. firefly was collected from the Yasouj area of Iran and its luciferase gene sequence was cloned and characterized. The genomic DNA length for this luciferase was the 1950 bp that combined of seven exons and separated by six introns. The results of multiple sequence alignment show that this gene has the most similarity with DNA gene luciferase from the Hotaria unmunsana species. Further analysis determined accurately the location of these introns in the luciferase gene. However, the deduced amino acid sequences of the luciferase gene (548 residues) showed that this luciferase had 97.8% resemblance to luciferase from Lampyroidea maculata species. By in silico modeling of firefly luciferase in an I-TASSER server, the 3D structure of this enzyme was evaluated. The results of phylogenetic tree analysis display the close evolutionary relationship of this luciferase gene and luciferase gene from the Lampyroidea maculata and Hotaria unmunsana.
Collapse
|
14
|
Nakhaee N, Asad S, Khajeh K, Arab SS, Amoozegar MA. Improving the thermal stability of azoreductase from Halomonas elongata by introducing a disulfide bond via site-directed mutagenesis. Biotechnol Appl Biochem 2018; 65:883-891. [PMID: 30132989 DOI: 10.1002/bab.1688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/11/2018] [Indexed: 11/06/2022]
Abstract
Azoreductases mainly reduce azo dyes, the largest class of colorants, to colorless aromatic amines. AzoH, a new azoreductase from the halophilic bacterium, Halomonas elongata, has been recently cloned and expressed in Escherichia coli. The aim of this study was to improve thermal stability of this enzyme by introducing new disulfide bonds. Since X-ray crystallography was not available, homology modeling and molecular dynamics was used to construct the enzyme three-dimensional structure. Potential disulfide bonds for increasing thermal stability were found using DIScover online software. Appropriate mutations (L49C/D108C) to form a disulfide bond were introduced by the Quik-Change method. Mutant protein expressed in E. coli showed increased thermal stability at 50 °C (increased half-life from 12.6 Min in AzoH to 26.66 Min in a mutated enzyme). The mutated enzyme could also tolerate 5% (w/v) NaCl and retained 30% of original activity after 24 H incubation, whereas the wild-type enzyme was completely inactivated. According to circular dichroism studies, the secondary structure was not altered by this mutation; however, a blue shift in intrinsic florescent graph revealed changes in the tertiary structure. This is the first study to improve thermal stability and salt tolerance of a halophilic azoreductase.
Collapse
Affiliation(s)
- Narjes Nakhaee
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Jazayeri FS, Amininasab M, Hosseinkhani S. Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase. PLoS One 2017; 12:e0180667. [PMID: 28672033 PMCID: PMC5495494 DOI: 10.1371/journal.pone.0180667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Luciferase is the key component of light production in bioluminescence process. Extensive and advantageous application of this enzyme in biotechnology is restricted due to its low thermal stability. Here we report the effect of heating up above Tm on the structure and dynamical properties of luciferase enzyme compared to temperature at 298 K. In this way we demonstrate that the number of hydrogen bonds between N- and C-domain is increased for the free enzyme at 325 K. Increased inter domain hydrogen bonds by three at 325 K suggests that inter domain contact is strengthened. The appearance of simultaneous strong salt bridge and hydrogen bond between K529 and D422 and increased existence probability between R533 and E389 could mechanistically explain stronger contact between N- and C-domain. Mutagenesis studies demonstrated the importance of K529 and D422 experimentally. Also the significant reduction in SASA for experimentally important residues K529, D422 and T343 which are involved in active site region was observed. Principle component analysis (PCA) in our study shows that the dynamical behavior of the enzyme is changed upon heating up which mainly originated from the change of motion modes and associated extent of those motions with respect to 298 K. These findings could explain why heating up of the enzyme or thermal fluctuation of protein conformation reduces luciferase activity in course of time as a possible mechanism of thermal functional inactivation. According to these results we proposed two strategies to improve thermal stability of functional luciferase.
Collapse
Affiliation(s)
- Fatemeh S. Jazayeri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
- * E-mail: (MA); (SH)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IRAN
- * E-mail: (MA); (SH)
| |
Collapse
|
16
|
Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement. J Biosci 2017; 41:577-588. [PMID: 27966481 DOI: 10.1007/s12038-016-9643-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The organophosphorus hydrolase (OPH) has been used to degrade organophosphorus chemicals, as one of the most frequently used decontamination methods. Under chemical and thermal denaturing conditions, the enzyme has been shown to unfold. To utilize this enzyme in various applications, the thermal stability is of importance. The engineering of de novo disulphide bridges has been explored as a means to increase the thermal stability of enzymes in the rational method of protein engineering. In this study, Disulphide by Design software, homology modelling and molecular dynamics simulations were used to select appropriate amino acid pairs for the introduction of disulphide bridge to improve protein thermostability. The thermostability of the wild-type and three selected mutant enzymes were evaluated by half-life, delta G inactivation (ΔGi) and structural studies (fluorescence and far-UV CD analysis). Data analysis showed that half-life of A204C/T234C and T128C/E153C mutants were increased up to 4 and 24 min, respectively; however, for the G74C/A78C mutant, the half-life was decreased up to 9 min. For the T128C/E124C mutant, both thermal stability and Catalytic efficiency (kcat) were also increased. The half-life and ΔGi results were correlated to the obtained information from structural studies by circular dichroism (CD) spectrometry and extrinsic fluorescence experiments; as rigidity increased in A204C/T2234C and T128C/E153C mutants, half-life and ΔGi also increased. For G74C/A78C mutant, these parameters decreased due to its higher flexibility. The results were submitted a strong evidence for the possibility to improve the thermostability of OPH enzyme by introducing a disulphide bridge after bioinformatics design, even though this design would not be always successful.
Collapse
|
17
|
Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, He J. Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Hosseinkhani S, Emamgholi Zadeh E, Sahebazzamani F, Ataei F, Hemmati R. Luciferin-Regenerating Enzyme Crystal Structure Is Solved but its Function Is Still Unclear. Photochem Photobiol 2017; 93:429-435. [PMID: 28120440 DOI: 10.1111/php.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023]
Abstract
Contribution of luciferin-regenerating enzyme (LRE) for in vitro recycling of D-luciferin has been reported. According to crystal structure of LRE, it is a beta-propeller protein which is a type of all β-protein architecture. In this overview, reinvestigation of the luciferase-based LRE assays and its function is reported. Until now, sequence of LRE genes from four different species of firefly has been reported. In spite of previous reports, T-LRE (from Lampyris turkestanicus) was cloned and expressed in Escherichia coli as well as Pichia pastoris in a nonsoluble form as inclusion body. According to recent investigations, bioluminescent signal of soluble T-LRE-luciferase-coupled assay increased and then reached an equilibrium state in the presence of D-cysteine. In addition, the results revealed that both D- and L-cysteine in the absence of T-LRE caused a significant increase in bioluminescence intensity of luciferase over a long time. Based on activity measurements and spectroscopic results, D-cysteine increased the activity of luciferase due to its redox potential and induction of conformational changes in structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE (at least T-LRE) on luciferase activity, most of the increase in luciferase activity is caused by direct effect of D-cysteine on structure and activity of firefly luciferase. Moreover, bioinformatics analysis cannot support the presence of LRE in peroxisome of photocytes in firefly lanterns.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Emamgholi Zadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sahebazzamani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
19
|
Sagong HY, Kim KJ. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution. PLoS One 2017; 12:e0170163. [PMID: 28095457 PMCID: PMC5240995 DOI: 10.1371/journal.pone.0170163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/30/2016] [Indexed: 01/07/2023] Open
Abstract
Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb Technol 2017; 96:47-59. [DOI: 10.1016/j.enzmictec.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
|
21
|
Dehnavi E, Fathi-Roudsari M, Mirzaie S, Arab SS, Ranaei Siadat SO, Khajeh K. Engineering disulfide bonds in Selenomonas ruminantium β-xylosidase by experimental and computational methods. Int J Biol Macromol 2016; 95:248-255. [PMID: 27818293 DOI: 10.1016/j.ijbiomac.2016.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Homotetrameric β-xylosidase from Selenomonas ruminantium (SXA) is one of the most efficient enzymes known for the hydrolysis of cell wall hemicellulose. SXA shows a rapid rate of activity loss at temperatures above 50°C. In this study, we have introduced two inter-subunit disulfide bridges with one point mutation. Lys237 was chosen to be replaced with cysteine since it interacts with the same residue in the opposite subunit. While pH optimum, temperature profile and catalytic efficiency of the mutated variant were similar to the native enzyme, the mutated enzyme showed about 40% increase in thermal stability at 55°C. Our results showed that introduction of a single residue mutation in structure of SXA results in appearance of two disulfide bonds at dimer-dimer interface of the enzyme. Coarse-grained molecular dynamics (CG-MD) simulations also proved lower amounts of root mean square fluctuation (RMSF) for position 237 and potential energy for mutated SXA. Based these results, we suggest that choosing a correct residue for mutation in multi subunit proteins results in multiple site conversions which equals to several simultaneous mutations. Furthermore, CG-MD simulation in agreement with experimental methods showed higher thermostability of mutated SXA which proved applicability of this simulation for thermostability analysis.
Collapse
Affiliation(s)
- Ehsan Dehnavi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Engineering Laboratory, Protein Research Center (PRC), Shahid Beheshti University, GC, Tehran, Iran; Nanobiotechnology Engineering Laboratory, Faculty of Engineering and New Technologies, Shahid Beheshti University, GC, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
22
|
Takalloo Z, Sajedi RH, Hosseinkhani S, Asghari SM. Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter. Arch Biochem Biophys 2016; 610:33-40. [DOI: 10.1016/j.abb.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
|
23
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 DOI: 10.1371/journal.pone.0162318.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 05/26/2023] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
24
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 PMCID: PMC5033358 DOI: 10.1371/journal.pone.0162318] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| |
Collapse
|
25
|
Lohrasbi-Nejad A, Torkzadeh-Mahani M, Hosseinkhani S. Hydrophobin-1 promotes thermostability of firefly luciferase. FEBS J 2016; 283:2494-507. [PMID: 27191938 DOI: 10.1111/febs.13757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
The thermal sensitivity of firefly luciferase limits its use in certain applications. Firefly luciferase has hydrophobic sites on its surface, which lead to aggregation and inactivation of the enzyme at temperatures over 30 °C. We have successfully stabilized firefly luciferase at high temperatures with the assistance of a unique protein, hydrophobin-1 (HFB1). HFB1 is a small secretory protein belonging to class II of hydrophobins with a low molecular weight (7.5 kDa) and distinct functional hydrophobic patch on its surface. The interaction of HFB1 with hydrophobic sites on the surface of luciferase was confirmed by extrinsic fluorescence studies using 8-anilino-1-naphthalenesulfonic acid (ANS) as a hydrophobic reporter probe. Calculation of thermodynamic parameters of heat inactivation of luciferase shows that conformational changes and flexibility of enzyme decreased in the presence of HFB1, and thermostability of the HFB1-treated enzyme increased. Furthermore, the addition of HFB1 into the enzymatic solution leads to an increase in catalytic efficiency of luciferase and subsequently improves the utility of the enzyme as an ATP detector.
Collapse
Affiliation(s)
- Azadeh Lohrasbi-Nejad
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Research institute for Science and High Technology and Environmental Sciences, Graduated University of Advanced Technology, Kerman, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Sobhani-Damavandifar Z, Hosseinkhani S, Sajedi RH. Proposed ionic bond between Arg300 and Glu270 and Glu271 are not involved in inactivation of a mutant firefly luciferase (LRR). Enzyme Microb Technol 2016; 86:17-24. [PMID: 26992788 DOI: 10.1016/j.enzmictec.2016.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
The weakness of firefly luciferase is its rapid inactivation. Many studies have been done to develop thermostable luciferases. One of these modifications was LRR mutant in which the Leu300 was substituted with Arg in the E(354)RR(356)Lampyris turkestanicus luciferase as template. LRR was more thermostable than the wild type but with only 0.02% activity. In this study, site-directed mutagenesis was used to change the proposed ionic bond between the Arg and two neighboring residues (Glu270 and Glu271), to understand if the induced interactions were responsible for inactivation in LRR. Our results showed that substitution of Glu270 and 271 with Ala removed the interactions but the activity of enzyme did not return. The E270A mutant was more active than LRR but the E271A and E270A/E271A mutants were inactive. Fluorescence and CD measurements showed that these mutations were accompanied by conformational changes. Extrinsic fluorescence measurement and obtained quenching data by KI and acrylamide also confirmed that the mutants were less compact than the LRR enzyme. In conclusion, in LRR, the interactions between Arg300 and Glu270 and Glu271 were not responsible for the enzyme inactivation and it is proposed that the enzyme inactivation is due to conformational changes of LRR mutant of firefly luciferase.
Collapse
Affiliation(s)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Schmidt S, Genz M, Balke K, Bornscheuer UT. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. J Biotechnol 2015; 214:199-211. [DOI: 10.1016/j.jbiotec.2015.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/30/2023]
|
28
|
Yuan D, Zhao Z, Wang X, Guo S, Yang B, Wang Y. Sequence-based proline incorporation improves the thermostability ofCandida albicanslipase Lip5. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongjuan Yuan
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| | - Zexin Zhao
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Xiumei Wang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Shaohua Guo
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| | - Bo Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Yonghua Wang
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| |
Collapse
|
29
|
Naderi M, Moosavi-Movahedi AA, Hosseinkhani S, Nazari M, Bohlooli M, Hong J, Hadi-Alijanvand H, Sheibani N. Implication of disulfide bridge induced thermal reversibility, structural and functional stability for luciferase. Protein Pept Lett 2015; 22:23-30. [PMID: 25159509 DOI: 10.2174/0929866521666140827112816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Firefly luciferase is a relatively unstable protein and commonly loses its activity at room temperature because of structural changes. The structural and functional stability of this protein is critical for its enzymatic applications. Different approaches are applied to increase the stability of this enzyme such as designing of covalent cross-links (disulfide bonds). In this study, luciferase mutants containing one or two disulfide bonds were compared to the native protein for their for their structural, thermodynamic, and functional properties. Mutant forms of P. Pyralis luciferase A²⁹⁶C-A³²⁶C and A²⁹⁶C-A³²⁶C/P⁴⁵¹C-V⁴⁶⁹C were used. Thermodynamic and biophysical studies were carried out using UV-Vis, fluorescence, circular dichroism, luminescence spectroscopy and differential scanning calorimetry (DSC). We observed that both mutant forms of the protein were more stable than the wild-type enzyme. However, the single disulfide bond containing mutant was structurally and functionally more stable than the mutant protein containing two disulfide bonds. Furthermore, the enzymatic activity of the single disulfide bond containing mutant protein was 7-folds greater than the wild type and the double disulfide bond proteins. The A²⁹⁶C-A³²⁶C mutation also increased the reversibility and disaggregation of the protein. The enhanced activity of the single disulfide bond mutant protein was contributed to the expansion of its active site cleft, which was confirmed by bioinformatics tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nader Sheibani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Yu H, Zhao Y, Guo C, Gan Y, Huang H. The role of proline substitutions within flexible regions on thermostability of luciferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:65-72. [PMID: 25448017 DOI: 10.1016/j.bbapap.2014.10.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Improving the stability of firefly luciferase has been a critical issue for its wider industrial applications. Studies about hyperthermophile proteins show that flexibility could be an effective indicator to find out weak spots to engineering thermostability of proteins. However, the relationship among flexibility, activity and stability in most of proteins is unclear. Proline is the most rigid residue and can be introduced to rigidify flexible regions to enhance thermostability of proteins. We firstly apply three different methods, molecular dynamics (MD) simulation, B-FITTER and framework rigidity optimized dynamics algorithm (FRODA) to determine the flexible regions of Photinus pyralis luciferase: Fragment 197-207; Fragment 471-481 and Fragment 487-495. Then, introduction of proline is used to rigidify these flexible regions. Two mutants D476P and H489P within most flexible regions are finally designed. In the results, H489P mutant shows improved thermostability while maintaining its catalytic efficiency compared to that of wild type luciferase. Flexibility analysis confirms that the overall rigidity and local rigidity of H489P mutant are greatly strengthened. D476P mutant shows decreased thermosatbility and the reason for this is elucidated at the molecular level. S307P mutation is randomly chosen outside the flexible regions as a control. Thermostability analysis shows that S307P mutation has decreased kinetic stability and enhanced thermodynamic stability.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - Yang Zhao
- National Institutes for Food and Drug Control (NIFDC), Beijing 100050, PR China
| | - Chao Guo
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - Yiru Gan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China.
| |
Collapse
|
31
|
Gabriel GVM, Viviani VR. Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location. Photochem Photobiol Sci 2014; 13:1661-70. [PMID: 25285909 DOI: 10.1039/c4pp00278d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Firefly luciferases are widely used as bioluminescent reporter genes for bioimaging and biosensors. Aiming at simultaneous analyses of different gene expression and cellular events, luciferases and GFPs that exhibit distinct bioluminescence and fluorescence colors have been coupled with each promoter, making dual and multicolor reporter systems. Despite their wide use, firefly luciferase bioluminescence spectra are pH-sensitive, resulting in a typical large red shift at acidic pH, a side-effect that may affect some bioanalytical purposes. Although some intracellular pH-indicators employ dual color and fluorescent dyes, none has been considered to benefit from the characteristic spectral pH-sensitivity of firefly luciferases to monitor intracellular pH-associated stress, an important indicator of cell homeostasis. Here we demonstrate a linear relationship between the ratio of intensities in the green and red regions of the bioluminescence spectra and pH using firefly luciferases cloned in our laboratory (Macrolampis sp2 and Cratomorphus distinctus), allowing estimation of E. coli intracellular pH, thus providing a new analytical method for ratiometric intracellular pH-sensing. This is the first dual reporter system that employs a single luciferase gene to simultaneously monitor intracellular pH using spectral changes, and gene expression and/or ATP concentration using the bioluminescence intensity, showing great potential for real time bioanalysis of intracellular processes associated with metabolic changes such as apoptosis, cell death, inflammation and tissue acidification, among the other physiological changes.
Collapse
Affiliation(s)
- Gabriele V M Gabriel
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil.
| | | |
Collapse
|
32
|
Azad T, Tashakor A, Hosseinkhani S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 2014; 406:5541-60. [DOI: 10.1007/s00216-014-7980-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 12/19/2022]
|
33
|
Kovács K, Bánóczi G, Varga A, Szabó I, Holczinger A, Hornyánszky G, Zagyva I, Paizs C, Vértessy BG, Poppe L. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS One 2014; 9:e85943. [PMID: 24475062 PMCID: PMC3903478 DOI: 10.1371/journal.pone.0085943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.
Collapse
Affiliation(s)
- Klaudia Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Bánóczi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Varga
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Izabella Szabó
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - András Holczinger
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
34
|
Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 2014; 289:7994-8006. [PMID: 24448805 DOI: 10.1074/jbc.m113.536045] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Collapse
Affiliation(s)
- Yuan Xie
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China and
| | | | | | | | | | | | | |
Collapse
|
35
|
Ohmuro-Matsuyama Y, Hara Y, Ueda H. Improved Protein–Protein Interaction Assay FlimPIA by the Entrapment of Luciferase Conformation. Anal Chem 2013; 86:2013-8. [DOI: 10.1021/ac403065v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuki Ohmuro-Matsuyama
- Department
of Chemistry and Biotechnology, School of Engineering,, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18
Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
- The Japan Society
for the Promotion of Science, 8 Ichiban-Cho, Chiyoda-ku, Tokyo, 102-8472, Japan
| | - Yuko Hara
- Department
of Chemistry and Biotechnology, School of Engineering,, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18
Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Ueda
- Department
of Chemistry and Biotechnology, School of Engineering,, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18
Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
36
|
Dombkowski AA, Sultana KZ, Craig DB. Protein disulfide engineering. FEBS Lett 2013; 588:206-12. [PMID: 24291258 DOI: 10.1016/j.febslet.2013.11.024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.
Collapse
Affiliation(s)
- Alan A Dombkowski
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kazi Zakia Sultana
- Department of Computer Science & Engineering, Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh
| | - Douglas B Craig
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
37
|
Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 2013; 32:308-15. [PMID: 24211474 DOI: 10.1016/j.biotechadv.2013.10.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 01/06/2023]
Abstract
Engineering proteins for thermostability is an exciting and challenging field since it is critical for broadening the industrial use of recombinant proteins. Thermostability of proteins arises from the simultaneous effect of several forces such as hydrophobic interactions, disulfide bonds, salt bridges and hydrogen bonds. All of these interactions lead to decreased flexibility of polypeptide chain. Structural studies of mesophilic and thermophilic proteins showed that the latter need more rigid structures to compensate for increased thermal fluctuations. Hence flexibility can be an indicator to pinpoint weak spots for enhancing thermostability of enzymes. A strategy has been proven effective in enhancing proteins' thermostability with two steps: predict flexible sites of proteins firstly and then rigidify these sites. We refer to this approach as rigidify flexible sites (RFS) and give an overview of such a method through summarizing the methods to predict flexibility of a protein, the methods to rigidify residues with high flexibility and successful cases regarding enhancing thermostability of proteins using RFS.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
38
|
Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase. Appl Biochem Biotechnol 2013; 171:1805-18. [PMID: 23999738 DOI: 10.1007/s12010-013-0450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Anabeana variabilis phenylalanine ammonia lyase has just recently been discovered and introduced in clinical trials of phenylketonuria enzyme replacement therapy for its outstanding kinetic properties. In the present study, kinetic stabilization of this therapeutically important enzyme has been explored by introduction of a disulfide bond into the structure. Site-directed mutagenesis was performed with quick-change PCR method. Recombinant wild-type and mutated enzymes were expressed in Escherichia coli, and his-tagged proteins were affinity purified. Formation of disulfide bond was confirmed by Ellman's method, and then chemical unfolding, kinetic behavior, and thermal inactivation of mutated enzyme were compared with the wild type. Based on our results, the Q292C mutation resulted in a significant improvement in kinetic stability and resistance against chemical unfolding of the enzyme while kinetic parameters and pH profile of enzyme activity were remained unaffected. The results of the present study provided an insight towards designing phenylalanine ammonia lyases with higher stability.
Collapse
|
39
|
Nazari M, Hosseinkhani S, Hassani L. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci 2013; 12:298-308. [DOI: 10.1039/c2pp25140j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Koksharov MI, Ugarova NN. Approaches to engineer stability of beetle luciferases. Comput Struct Biotechnol J 2012; 2:e201209004. [PMID: 24688645 PMCID: PMC3962189 DOI: 10.5936/csbj.201209004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 01/22/2023] Open
Abstract
Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia N Ugarova
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
41
|
Karimzadeh S, Moradi M, Hosseinkhani S. Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase. Int J Biol Macromol 2012; 51:837-44. [PMID: 22750581 DOI: 10.1016/j.ijbiomac.2012.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
The wild type Photinus pyralis luciferase does not have any disulfide bridge. Disulfide bridges are determinant in inherent stability of protein at moderate temperatures. Meanwhile, arginin is responsible for thermostability at higher temperatures. In this study, by concomitant introduction of disulfide bridge and a surface arginin in a mutant (A296C-A326C/I232R), the contribution of disulfide bridge introduction and surface hydrophilic residue on activity and global stability of P. pyralis luciferase is investigated. In addition to the mentioned mutant; I232R, A296C-A326C and wild type luciferases are characterized. Though addition of Arg caused stability against proteolysis but in combination with disulfide bridge resulted in decreased thermal stability compared to A296C-A326C mutant. In spite of long distance of two different mutations (A296C-A326C and I232R) from each other in the three-dimensional structure, combination of their effects on the stability of luciferase was not cumulative.
Collapse
Affiliation(s)
- Somayeh Karimzadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
42
|
Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y, Ohnishi N, Seo Y, Otsuka M, Fuse Y, Ohura Y, Komatsu T, Moriya Y, Okada S, Furutani N, Hirao A, Horikawa K, Kudo T, Shibata S. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 2012; 22:1029-34. [PMID: 22578421 DOI: 10.1016/j.cub.2012.04.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro. In the present study, we sought to clarify the role of the SCN in the intact system by recording rhythms in clock gene expression in vivo. A practical imaging protocol was developed that enables us to measure circadian rhythms easily, noninvasively, and longitudinally in individual mice. Circadian oscillations were detected in the kidney, liver, and submandibular gland studied in about half of the SCN-lesioned, behaviorally arrhythmic mice. However, their amplitude was decreased in these organs. Free-running periods of peripheral clocks were identical to those of activity rhythms recorded before the SCN lesion. Thus, we can report for the first time that many of the fundamental properties of circadian oscillations in peripheral clocks in vivo are maintained in the absence of SCN control.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Fahmi NE, Nangreave RC, Mehellou Y, Hecht SM. Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives. Bioorg Med Chem 2012; 20:2679-89. [PMID: 22405920 PMCID: PMC3575115 DOI: 10.1016/j.bmc.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022]
Abstract
N,S-diprotected L-thiothreonine and L-allo-thiothreonine derivatives were synthesized using a novel chemical strategy, and used for esterification of the dinucleotide pdCpA. The aminoacylated dinucleotides were then employed for the preparation of activated suppressor tRNA(CUA) transcripts. Thiothreonine and allo-thiothreonine were incorporated into a predetermined position of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine, and the elaborated proteins were derivatized site-specifically at the thiothreonine residue with a fluorophore.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Ryan C. Nangreave
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Youcef Mehellou
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
44
|
Amini-Bayat Z, Hosseinkhani S, Jafari R, Khajeh K. Relationship between stability and flexibility in the most flexible region of Photinus pyralis luciferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:350-8. [PMID: 22155276 DOI: 10.1016/j.bbapap.2011.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Firefly luciferase is a protein with a large N-terminal and a small C-terminal domain. B-factor analysis shows that its C-terminal is much more flexible than its N-terminal. Studies on hyperthermophile proteins have been shown that the increased thermal stability of hyperthermophile proteins is due to their enhanced conformational rigidity and the relationship between flexibility, stability and function in most of proteins is on debate. Two mutations (D474K and D476N) in the most flexible region of firefly luciferase were designed. Thermostability analysis shows that D476N mutation doesn't have any significant effect but D474K mutation destabilized protein. On the other hand, flexibility analysis using dynamic quenching and limited proteolysis demonstrates that D474K mutation became much more flexible than wild type although D476N doesn't have any significant difference. Intrinsic and ANS fluorescence studies demonstrate that D476N mutation is brought about by structural changes without significant effect on thermostability and flexibility. Molecular modeling reveals that disruption of a salt bridge between D(474) and K(445) accompanying with some H-bond deletion may be involved in destabilization of D474K mutant.
Collapse
Affiliation(s)
- Zahra Amini-Bayat
- Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
45
|
Mortazavi M, Hosseinkhani S. Design of thermostable luciferases through arginine saturation in solvent-exposed loops. Protein Eng Des Sel 2011; 24:893-903. [PMID: 22068960 DOI: 10.1093/protein/gzr051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most bioluminescence systems the oxidation of luciferin and production of light is catalyzed by luciferases. Protein engineering studies have shown that thermostable proteins from thermophilic organisms have a higher frequency of Arg, especially in exposed states. To further clarify the arginine saturation effect on thermostability of firefly luciferase, some of hydrophobic solvent-exposed residues in Lampyris turkestanicus luciferase are changed to arginine. All of these residues are located at the surface loops of L.turkestanicus luciferase. Starting with a luciferase mutant (E³⁵⁴Q/Arg³⁵⁶), single mutation (-Q³⁵R, -I¹⁸²R, -I²³²R and -L(300)R), double mutation (-Q³⁵R/I²³²R) and triple mutation (-Q³⁵R/I²³²R/I¹⁸²R) are added. Bioluminescence emission spectra indicate that substitution of Arg by these residues, do not effect on the maximum wavelength of emission spectrum. It should be noted, introduction of double mutation (-Q³⁵R/I²³²R) and triple mutation (-Q³⁵R/I²³²R/I¹⁸²R) were kept specific activity of firefly luciferase. By addition of positively charged residue, some specific mutations (-I²³²R, -Q³⁵R/I²³²R and -Q³⁵R/I²³²R/I¹⁸²R) showed that optimum temperature of activity was increased to 40°C which are 12 and 15°C higher than E³⁵⁴Q/Arg³⁵⁶ and wild-type luciferases, respectively. Also, after 40 min incubation of enzymes at 40°C, the relative remaining activity of wild type was only 5%, whereas for -I²³²R, -Q³⁵R/I²³²R and -Q³⁵R/I²³²R/I¹⁸²R was 60, 80 and 80% of original activity, respectively.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
46
|
Koksharov MI, Ugarova NN. Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 2011; 24:835-44. [PMID: 21900306 DOI: 10.1093/protein/gzr044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Firefly luciferase is widely used in a number of areas of biotechnology and molecular biology. However, rapid inactivation of wild-type (WT) luciferases at elevated temperatures often hampers their application. A simple non-lethal in vivo screening scheme was used to identify thermostable mutants of luciferase in Escherichia coli colonies. This scheme allowed carrying out each cycle of mutagenesis in a rapid and efficient manner. Four rounds of directed evolution were conducted on a part of the gene coding for amino acid residues 130-390 of Luciola mingrelica luciferase. The resultant mutant designated 4TS had a half-life of 10 h at 42°C, which is 65-fold higher compared with the WT luciferase. Moreover, the mutant 4TS showed a 1.9-fold increase in specific activity, 5.7-fold reduction of K(m) for ATP and a higher-temperature optimum compared with the WT enzyme. 4TS contains eight mutations, four of which are suggested to be mainly responsible for the enhancement of thermostability: R211L, A217V, E356K and S364C. Thus, directed evolution with non-lethal colony screening for in vivo bioluminescence activity proved to be an effective and efficient approach for increasing thermal stability of luciferase while retaining high catalytic activity.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Division of Chemical Enzymology, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | |
Collapse
|
47
|
Hosseinkhani S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci 2011; 68:1167-82. [PMID: 21188462 PMCID: PMC11114832 DOI: 10.1007/s00018-010-0607-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
Abstract
Firefly luciferase-catalyzed reaction proceeds via the initial formation of an enzyme-bound luciferyl adenylate intermediate. The chemical origin of the color modulation in firefly bioluminescence has not been understood until recently. The presence of the same luciferin molecule, in combination with various mutated forms of luciferase, can emit light at slightly different wavelengths, ranging from red to yellow to green. A historical perspective of development in understanding of color emission mechanism is presented. To explain the variation in the color of the bioluminescence, different factors have been discussed and five hypotheses proposed for firefly bioluminescence color. On the basis of recent results, light-color modulation mechanism of firefly luciferase propose that the light emitter is the excited singlet state of OL(-) [(1)(OL(-))*], and light emission from (1)(OL(-))* is modulated by the polarity of the active-site environment at the phenol/phenolate terminal of the benzothiazole fragment in oxyluciferin.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran.
| |
Collapse
|
48
|
Koksharov MI, Ugarova NN. Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase. Photochem Photobiol Sci 2011; 10:931-8. [DOI: 10.1039/c0pp00318b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Nazari M, Hosseinkhani S. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 2011; 10:1203-15. [DOI: 10.1039/c1pp05012e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Prado RA, Barbosa JA, Ohmiya Y, Viviani VR. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site. Photochem Photobiol Sci 2011; 10:1226-32. [DOI: 10.1039/c0pp00392a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|