1
|
Clothier GKK, Guimarães TR, Thompson SW, Howard SC, Muir BW, Moad G, Zetterlund PB. Streamlining the Generation of Advanced Polymer Materials Through the Marriage of Automation and Multiblock Copolymer Synthesis in Emulsion. Angew Chem Int Ed Engl 2024; 63:e202320154. [PMID: 38400586 DOI: 10.1002/anie.202320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R Guimarães
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS (UMR 5629), ENSCPB, Université de Bordeaux, 16 avenue Pey Berland, 33607, Pessac, France
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaun C Howard
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Hu X, Yin R, Jeong J, Matyjaszewski K. Robust Miniemulsion PhotoATRP Driven by Red and Near-Infrared Light. J Am Chem Soc 2024; 146:13417-13426. [PMID: 38691625 PMCID: PMC11099965 DOI: 10.1021/jacs.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Photoinduced polymerization techniques have gathered significant attention due to their mild conditions, spatiotemporal control, and simple setup. In addition to homogeneous media, efforts have been made to implement photopolymerization in emulsions as a practical and greener process. However, previous photoinduced reversible deactivation radical polymerization (RDRP) in heterogeneous media has relied on short-wavelength lights, which have limited penetration depth, resulting in slow polymerization and relatively poor control. In this study, we demonstrate the first example of a highly efficient photoinduced miniemulsion ATRP in the open air driven by red or near-infrared (NIR) light. This was facilitated by the utilization of a water-soluble photocatalyst, methylene blue (MB+). Irradiation by red/NIR light allowed for efficient excitation of MB+ and subsequent photoreduction of the ATRP deactivator in the presence of water-soluble electron donors to initiate and mediate the polymerization process. The NIR light-driven miniemulsion photoATRP provided a successful synthesis of polymers with low dispersity (1.09 ≤ Đ ≤ 1.29) and quantitative conversion within an hour. This study further explored the impact of light penetration on polymerization kinetics in reactors of varying sizes and a large-scale reaction (250 mL), highlighting the advantages of longer-wavelength light, particularly NIR light, for large-scale polymerization in dispersed media owing to its superior penetration. This work opens new avenues for robust emulsion photopolymerization techniques, offering a greener and more practical approach with improved control and efficiency.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Deane O, Mandrelier P, Musa OM, Jamali M, Fielding LA, Armes SP. Synthesis and Characterization of All-Acrylic Tetrablock Copolymer Nanoparticles: Waterborne Thermoplastic Elastomers via One-Pot RAFT Aqueous Emulsion Polymerization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2061-2075. [PMID: 38435050 PMCID: PMC10902817 DOI: 10.1021/acs.chemmater.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.
Collapse
Affiliation(s)
- Oliver
J. Deane
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Pierre Mandrelier
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Mohammed Jamali
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
4
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Qiao X, Qiao L, Zhou M, Zhang X, Shi G, He Y, Bourgeat-Lami E, Pang X. Carbon Quantum Dot-Catalyzed, Highly Efficient Miniemulsion Atom Transfer Radical Polymerization Induced by Visible Light. ACS Macro Lett 2022; 11:1298-1305. [DOI: 10.1021/acsmacrolett.2c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoguang Qiao
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Elodie Bourgeat-Lami
- Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43, Bvd. du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Confined polymerization: RATRP of GMA in the bicontinuous PolyHIPE. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lohmann V, Rolland M, Truong NP, Anastasaki A. Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Rolland M, Dufresne ER, Truong NP, Anastasaki A. The effect of surface-active statistical copolymers in low-energy miniemulsion and RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Study of the composition, lenght and chemical structure of surface-active statistical copolymers in low-energy miniemulsions.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3152, Australia
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Nanoconfinement in miniemulsion increases reaction rates of thiol–ene photopolymerization and yields high molecular weight polymers. Polym Chem 2022. [DOI: 10.1039/d2py00350c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photoinitiated thiol–ene polymerization was performed in bulk and miniemulsion. We show that the compartmentalization of the reaction inside nanodroplets led to faster reaction kinetics and yielded polymers with higher molecular weight.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
10
|
Thompson SW, Guimarães TR, Zetterlund PB. Multiblock copolymer synthesis via aqueous RAFT polymerization-induced self-assembly (PISA). Polym Chem 2022. [DOI: 10.1039/d2py01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing RAFT PISA emulsion polymerization to synthesize high molecular weight hexablock multiblock copolymers.
Collapse
Affiliation(s)
- Steven W. Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- School of Chemistry and Physics, Queensland University of Technology (OUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Rolland M, Truong NP, Parkatzidis K, Pilkington EH, Torzynski AL, Style RW, Dufresne ER, Anastasaki A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS AU 2021; 1:1975-1986. [PMID: 34841413 PMCID: PMC8611665 DOI: 10.1021/jacsau.1c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nanoemulsion technology enables the production of uniform nanoparticles for a wide range of applications. However, existing nanoemulsion strategies are limited to the production of spherical nanoparticles. Here, we describe a low-energy nanoemulsion method to produce nanoparticles with various morphologies. By selecting a macro-RAFT agent (poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA))) that dramatically lowers the interfacial tension between monomer droplets and water, we can easily produce nanoemulsions at room temperature by manual shaking for a few seconds. With the addition of a common ionic surfactant (SDS), these nanoscale droplets are robustly stabilized at both the formation and elevated temperatures. Upon polymerization, we produce well-defined block copolymers forming nanoparticles with a wide range of controlled morphologies, including spheres, worm balls, worms, and vesicles. Our nanoemulsion polymerization is robust and well-controlled even without stirring or external deoxygenation. This method significantly expands the toolbox and availability of nanoemulsions and their tailor-made polymeric nanomaterials.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Kostas Parkatzidis
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Emily H. Pilkington
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Alexandre L. Torzynski
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Robert W. Style
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion‐like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10 Clayton South VIC 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion-like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021; 60:23281-23288. [PMID: 34411397 DOI: 10.1002/anie.202108159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Synthesis of multicompositional polymeric nanoparticles of diameters 100-150 nm comprising well-defined multiblock copolymers reaching from the particle surface to the particle core was conducted using surfactant-free aqueous macroRAFT emulsion polymerization. The imposed constraints on chain mobility as well as chemical incompatibility between the blocks result in microphase separation, leading to formation of an onion-like multilayered particle morphology with individual layer thicknesses of approximately 20 nm. The approach provides considerable versatility in particle morphology design as the composition of individual layers as well as the number of layers can be tailored as desired, offering more complex particle design compared to approaches relying on self-assembly of preformed diblock copolymers within particles. Microphase separation can occur in these systems under conditions where the corresponding bulk system would not theoretically result in microphase separation.
Collapse
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Dergunov SA. Biomimetic controlled radical photopolymerization in a two-dimensional organized environment under visible light. Chem Commun (Camb) 2021; 57:10612-10615. [PMID: 34570148 DOI: 10.1039/d1cc03982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast and well-controlled photoinduced atom transfer radical polymerization (photoATRP) in the organized medium of a bilayer activated by visible light under environmentally friendly mild aqueous conditions leads to polymers with predetermined molecular weight and low dispersity. The decisive parameter for photoATRP of monomers in the organized medium was their mobility and orientation with respect to the bilayer and the photoredox catalyst localized in the interstitial layer.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, 06269, CT, USA.
| |
Collapse
|
15
|
Zaremski MY, Melik-Nubarov NS. Reversible Deactivation Radical Polymerization Mediated by Nitroxides and Green Chemistry. POLYMER SCIENCE SERIES C 2021. [PMCID: PMC8597878 DOI: 10.1134/s1811238221020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Yu. Zaremski
- Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
16
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10,l, Clayton South, Victoria 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
A Review on Recent Progress of Glycan-Based Surfactant Micelles as Nanoreactor Systems for Chemical Synthesis Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.
Collapse
|
18
|
Khan M, Guimarães TR, Choong K, Moad G, Perrier S, Zetterlund PB. RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenneth Choong
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Sobotta FH, Kuchenbrod MT, Grune C, Fischer D, Hoeppener S, Brendel JC. Elucidating preparation-structure relationships for the morphology evolution during the RAFT dispersion polymerization of N-acryloyl thiomorpholine. Polym Chem 2021. [DOI: 10.1039/d0py01697g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Depending on the conditions, nearly monodisperse spherical micelles or complex morphologies are formed during a polymerization induced self-assembly (PISA) process based on the water-soluble monomer N-acryloylthiomorpholine.
Collapse
Affiliation(s)
- Fabian H. Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Maren T. Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Dagmar Fischer
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Pharmaceutical Technology
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
20
|
Bernat R, Maksym P, Tarnacka M, Szelwicka A, Bielas R, Wojtyniak M, Balin K, Hachuła B, Chrobok A, Paluch M, Kamiński K. Hard confinement systems as effective nanoreactors for in situ photo-RAFT: towards control over molecular weight distribution and morphology. Polym Chem 2021. [DOI: 10.1039/d0py01651a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein an alternative strategy to tune polymer dispersity and morphology was developed for photoiniferter-mediated RAFT giving well-defined ionic and non-ionic nanomaterials.
Collapse
|
21
|
Mao W, Sarkar J, Peng B, Goto A. Aqueous emulsion polymerizations of methacrylates and styrene via reversible complexation mediated polymerization (RCMP). Polym Chem 2021. [DOI: 10.1039/d1py01087e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aqueous emulsion polymerization via reversible complexation mediated living radical polymerization yielded low-dispersity poly(methyl methacrylate)s and polystyrenes.
Collapse
Affiliation(s)
- Weijia Mao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Bo Peng
- BASF Advanced Chemicals Co., Ltd, R&D I, No 300, Jiangxinsha Road, 200137 Shanghai, China
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
22
|
González‐Blanco R, Jiménez‐Reyes N, Cunningham MF, Saldívar‐Guerra E. High Solids Hydroxy‐TEMPO Mediated Radical Semibatch Emulsion Polymerization of Styrene. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roberto González‐Blanco
- Polymerization Processes Department Research Center for Applied Chemistry (CIQA) Blvd. Enrique Reyna Hermosillo # 140 Saltillo Coahuila 25253 Mexico
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Nelson Jiménez‐Reyes
- Polymerization Processes Department Research Center for Applied Chemistry (CIQA) Blvd. Enrique Reyna Hermosillo # 140 Saltillo Coahuila 25253 Mexico
| | | | - Enrique Saldívar‐Guerra
- Polymerization Processes Department Research Center for Applied Chemistry (CIQA) Blvd. Enrique Reyna Hermosillo # 140 Saltillo Coahuila 25253 Mexico
| |
Collapse
|
23
|
De Smit K, Marien YW, Edeleva M, Van Steenberge PH, D’hooge DR. Roadmap for Monomer Conversion and Chain Length-Dependent Termination Reactivity Algorithms in Kinetic Monte Carlo Modeling of Bulk Radical Polymerization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kyann De Smit
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70A, 9052 Ghent, Belgium
| |
Collapse
|
24
|
Richardson RAE, Guimarães TR, Khan M, Moad G, Zetterlund PB, Perrier S. Low-Dispersity Polymers in Ab Initio Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01311] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
25
|
Thompson SW, Guimarães TR, Zetterlund PB. RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules 2020; 21:4577-4590. [DOI: 10.1021/acs.biomac.0c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
26
|
Tajbakhsh S, Hajiali F, Marić M. Nitroxide-Mediated Miniemulsion Polymerization of Bio-Based Methacrylates. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saeid Tajbakhsh
- Department of Chemical Engineering, McGill University, 3610 University St. Montreal, H3A 0C5 Quebec, Canada
| | - Faezeh Hajiali
- Department of Chemical Engineering, McGill University, 3610 University St. Montreal, H3A 0C5 Quebec, Canada
| | - Milan Marić
- Department of Chemical Engineering, McGill University, 3610 University St. Montreal, H3A 0C5 Quebec, Canada
| |
Collapse
|
27
|
Alqarni Y, Ishizuka F, Bell TDM, Tabor RF, Zetterlund PB, Saito K. Confined polymerisation of bis-thyminyl monomers within nanoreactors: towards molecular weight control. Polym Chem 2020. [DOI: 10.1039/d0py00523a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling polymer molecular weight by topochemical polymerisation inside nanoreactors.
Collapse
Affiliation(s)
- Yanallah Alqarni
- School of Chemistry
- Monash University
- Clayton
- Australia
- Department of Basic Sciences
| | - Fumi Ishizuka
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | | | - Rico F. Tabor
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Kei Saito
- School of Chemistry
- Monash University
- Clayton
- Australia
| |
Collapse
|
28
|
Dinh LNM, Ramana LN, Agarwal V, Zetterlund PB. Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polym Chem 2020. [DOI: 10.1039/d0py00404a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carboxylated graphene quantum dots (cGQDs) were synthesized from dextrose and sulfuric acid via a hydrothermal process, and subsequently used as sole surfactant in miniemulsion polymerization of styrene.
Collapse
Affiliation(s)
- Le N. M. Dinh
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Lakshmi N. Ramana
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
29
|
Dinh LNM, Ramana LN, Kuchel RP, Agarwal V, Zetterlund PB. Miniemulsion polymerization using carboxylated graphene quantum dots as surfactants: effects of monomer and initiator type. Polym Chem 2020. [DOI: 10.1039/d0py00925c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effectiveness of carboxylated graphene quantum dots (cGQDs) as sole surfactants have been investigated in miniemulsion polymerization of 8 different vinyl monomers, initiated by oil-soluble initiator AIBN and water-soluble initiator VA-044.
Collapse
Affiliation(s)
- Le N. M. Dinh
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Lakshmi N. Ramana
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
30
|
Zetterlund PB, D’hooge DR. The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
31
|
Jiang J, Wang WJ, Li BG, Zhu S. 110th Anniversary: Model-Guided Preparation of Copolymer Sequence Distributions through Programmed Semibatch RAFT Mini-Emulsion Styrene/Butyl Acrylate Copolymerization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Institute of Zhejiang University − Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, P.R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| |
Collapse
|
32
|
Clothier GKK, Guimarães TR, Khan M, Moad G, Perrier S, Zetterlund PB. Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Lett 2019; 8:989-995. [PMID: 35619483 DOI: 10.1021/acsmacrolett.9b00534] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiblock copolymers are a class of polymeric materials with a range of potential applications. We report here a strategy for the synthesis of multiblock copolymers based on methacrylates. Reversible addition-fragmentation chain transfer (RAFT) polymerization is implemented as an emulsion polymerization to generate seed particles as nanoreactors, which can subsequently be employed in sequential RAFT emulsion polymerizations. The segregation effect allowed the synthesis of a high molar mass (>100,000 g·mol-1) decablock homopolymer at a high polymerization rate to an extent not previously achieved. A heptablock copolymer containing seven different 100 unit blocks was also successfully prepared, demonstrating how the strategy can be employed to precisely control the polymer composition at a level hitherto not accessible in environmentally friendly aqueous emulsion polymerization. Importantly, the methodology is a batch process without any intermediate purification steps, thus, rendering industrial scale up more feasible.
Collapse
Affiliation(s)
- Glenn K. K. Clothier
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Nauman N, Zaquen N, Junkers T, Boyer C, Zetterlund PB. Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nida Nauman
- Department of Polymer and Process Engineering, University of Engineering and Technology, G.T. Road, 54890 Lahore, Punjab, Pakistan
| | - Neomy Zaquen
- Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Tanja Junkers
- Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, VIC 3800 Melbourne, Australia
| | | | | |
Collapse
|
34
|
Guimarães TR, Khan M, Kuchel RP, Morrow IC, Minami H, Moad G, Perrier S, Zetterlund PB. Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00257] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - Hideto Minami
- Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | |
Collapse
|
35
|
He JY, Lu M. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of acrylonitrile in miniemulsion. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie-Yu He
- College of Marine Science & Technology, Hainan Tropical Ocean University, Sanya, China
| | - Mang Lu
- Department of Chemistry, Nanchang Normal University, Nanchang, China
| |
Collapse
|
36
|
Cuneo T, Graff RW, Wang X, Gao H. Synthesis of Highly Branched Copolymers in Microemulsion. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Robert W. Graff
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Xiaofeng Wang
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| |
Collapse
|
37
|
Devlaminck DJG, Van Steenberge PHM, Reyniers MF, D'hooge DR. Modeling of Miniemulsion Polymerization of Styrene with Macro-RAFT Agents to Theoretically Compare Slow Fragmentation, Ideal Exchange and Cross-Termination Cases. Polymers (Basel) 2019; 11:E320. [PMID: 30960304 PMCID: PMC6419184 DOI: 10.3390/polym11020320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 11/17/2022] Open
Abstract
A 5-dimensional Smith-Ewart based model is developed to understand differences for reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization with theoretical agents mimicking cases of slow fragmentation, cross-termination, and ideal exchange while accounting for chain length and monomer conversion dependencies due to diffusional limitations. The focus is on styrene as a monomer, a water soluble initiator, and a macro-RAFT agent to avoid exit/entry of the RAFT leaving group radical. It is shown that with a too low RAFT fragmentation rate coefficient it is generally not afforded to consider zero-one kinetics (for the related intermediate radical type) and that with significant RAFT cross-termination the dead polymer product is dominantly originating from the RAFT intermediate radical. To allow the identification of the nature of the RAFT retardation it is recommended to experimentally investigate in the future the impact of the average particle size (dp) on both the monomer conversion profile and the average polymer properties for a sufficiently broad dp range, ideally including the bulk limit. With decreasing particle size both a slow RAFT fragmentation and a fast RAFT cross-termination result in a stronger segregation and thus rate acceleration. The particle size dependency is different, allowing further differentiation based on the variation of the dispersity and end-group functionality. Significant RAFT cross-termination is specifically associated with a strong dispersity increase at higher average particle sizes. Only with an ideal exchange it is afforded in the modeling to avoid the explicit calculation of the RAFT intermediate concentration evolution.
Collapse
Affiliation(s)
- Dries J G Devlaminck
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Paul H M Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Marie-Françoise Reyniers
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Dagmar R D'hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 907, B-9052 Ghent, Belgium.
| |
Collapse
|
38
|
Khan M, Guimarães TR, Zhou D, Moad G, Perrier S, Zetterlund PB. Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29329] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Dewen Zhou
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10, Clayton South Victoria 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
- Warwick Medical School University of Warwick Coventry CV4 7AL United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade, Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
39
|
Marien YW, Van Steenberge PHM, R. D‘hooge D, Marin GB. Particle by Particle Kinetic Monte Carlo Tracking of Reaction and Mass Transfer Events in Miniemulsion Free Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02508] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Siirilä J, Häkkinen S, Tenhu H. The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polym Chem 2019. [DOI: 10.1039/c8py01421c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A thermoresponsive polymer, poly(N-vinylcaprolactam) (PNVCL), was synthesized in an emulsion above its thermal transition temperature to produce particles via polymerization induced self-assembly (PISA).
Collapse
|
41
|
Marien YW, Van Steenberge PHM, Pich A, D'hooge DR. Coupled stochastic simulation of the chain length and particle size distribution in miniemulsion radical copolymerization of styrene and N-vinylcaprolactam. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kinetic Monte Carlo modeling is applied for the coupled simulation of the chain length and particle size distribution in isothermal batch miniemulsion copolymerization of styrene and N-vinylcaprolactam.
Collapse
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- DWI – Leibniz Institute for Interactive Materials e.V
| | | | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials e.V
- 52074 Aachen
- Germany
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
42
|
Dergunov SA. Facile Synthesis of Chiral Polymers with Defined Architecture via Cooperative Assembly of Confined Templates. ACS Macro Lett 2018; 7:1322-1327. [PMID: 35651254 DOI: 10.1021/acsmacrolett.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein is presented the synergistically self-assembled system as biomimetic polymerization media. This approach allows the facile synthesis of chiral amino acid-based polymers with high molecular weight and low dispersity inside of the bilayer of catanionic vesicles by using a conventional radical polymerization under moderate conditions.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
43
|
Devlaminck DJG, Van Steenberge PHM, Reyniers MF, D’hooge DR. Deterministic Modeling of Degenerative RAFT Miniemulsion Polymerization Rate and Average Polymer Characteristics: Invalidity of Zero–One Nature at Higher Monomer Conversions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
|
45
|
Rodriguez KJ, Gajewska B, Pollard J, Pellizzoni MM, Fodor C, Bruns N. Repurposing Biocatalysts to Control Radical Polymerizations. ACS Macro Lett 2018; 7:1111-1119. [PMID: 35632946 DOI: 10.1021/acsmacrolett.8b00561] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reversible-deactivation radical polymerizations (controlled radical polymerizations) have revolutionized and revitalized the field of polymer synthesis. While enzymes and other biologically derived catalysts have long been known to initiate free radical polymerizations, the ability of peroxidases, hemoglobin, laccases, enzyme-mimetics, chlorophylls, heme, red blood cells, bacteria, and other biocatalysts to control or initiate reversible-deactivation radical polymerizations has only been described recently. Here, the scope of biocatalytic atom transfer radical polymerizations (bioATRP), enzyme-initiated reversible addition-fragmentation chain transfer radical polymerizations (bioRAFT), biocatalytic organometallic-mediated radical polymerizations (bioOMRP), and biocatalytic reversible complexation mediated polymerizations (bioRCMP) is critically reviewed, and the potential of these reactions for the environmentally friendly synthesis of precision polymers, for the preparation of functional nanostructures, for the modification of surfaces, and for biosensing is discussed.
Collapse
Affiliation(s)
- Kyle J. Rodriguez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bernadetta Gajewska
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonas Pollard
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Csaba Fodor
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
46
|
Huang Z, Qiu T, Xu H, Shi H, Rui J, Li X, Guo L. Surfactant-Free Visible-Light-Controlled Emulsion Polymerization toward ABA-Type Amphiphilic Triblock Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Teng Qiu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huangbing Xu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haotian Shi
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianling Rui
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoyu Li
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Longhai Guo
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
47
|
|
48
|
Wang Y, Dadashi-Silab S, Matyjaszewski K. Photoinduced Miniemulsion Atom Transfer Radical Polymerization. ACS Macro Lett 2018; 7:720-725. [PMID: 35632954 DOI: 10.1021/acsmacrolett.8b00371] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photomediated atom transfer radical polymerization (photoATRP) of (meth)acrylic monomers was conducted in miniemulsion media. The polymerization procedures took advantage of an ion-pair catalyst formed by interaction of Cu/TPMA2 (TPMA = tris(2-pyridylmethyl)amine) and an anionic surfactant, sodium dodecyl sulfate (SDS). The ion-pair catalyst was efficient in controlling ATRP reactions with catalyst loadings as low as 100 ppm. The effect of different polymerization parameters, such as the size of the reaction vial, amount of surfactant, and solids content influencing the photoATRP in miniemulsion, was studied. The polymerization was conducted with solids content ranging from 5 to 50 vol % under a moderate surfactant loading (<5 wt % relative to monomer). Excellent temporal control was achieved upon switching the UV light on and off multiple times, and the polymer was successfully chain extended, indicating high retention of chain-end fidelity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
49
|
Shupanov R, Chertovich A, Kos P. Micellar polymerization: Computer simulations by dissipative particle dynamics. J Comput Chem 2018; 39:1275-1284. [PMID: 29464743 DOI: 10.1002/jcc.25194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruslan Shupanov
- Faculty of Physics, Lomonosov MSU, Leninskie Gory 1, Moscow, 119991, Russia
| | | | - Pavel Kos
- Faculty of Physics, Lomonosov MSU, Leninskie Gory 1, Moscow, 119991, Russia
| |
Collapse
|
50
|
Zhao C, Sugimoto R, Naruoka Y. A Simple Method for Synthesizing Ultra-high-molecular-weight Polystyrene through Emulsion Polymerization Using Alkyl-9-BBN as an Initiator. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2064-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|