1
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Qu R, Li G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. BIOSENSORS 2022; 12:205. [PMID: 35448265 PMCID: PMC9032088 DOI: 10.3390/bios12040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 05/06/2023]
Abstract
Liquid crystals (LCs), as the remarkable optical materials possessing stimuli-responsive property and optical modulation property simultaneously, have been utilized to fabricate a wide variety of optical devices. Integrating the LCs and receptors together, LC biosensors aimed at detecting various biomolecules have been extensively explored. Compared with the traditional biosensing technologies, the LC biosensors are simple, visualized, and efficient. Owning to the irreplaceable superiorities, the research enthusiasm for the LC biosensors is rapidly rising. As a result, it is necessary to overview the development of the LC biosensors to guide future work. This article reviews the basic theory and advanced applications of LC biosensors. We first discuss different mesophases and geometries employed to fabricate LC biosensors, after which we introduce various detecting mechanisms involved in biomolecular detection. We then focus on diverse detection targets such as proteins, enzymes, nucleic acids, glucose, cholesterol, bile acids, and lipopolysaccharides. For each of these targets, the development history and state-of-the-art work are exhibited in detail. Finally, the current challenges and potential development directions of the LC biosensors are introduced briefly.
Collapse
Affiliation(s)
- Ruixiang Qu
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| | - Guoqiang Li
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
3
|
Naveenkumar PM, Singh RK, Mann S, Seth JR, Sharma KP. Polymer-Surfactant Driven Interactions and the Resultant Microstructure in Protein-Containing Liquid Crystal Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11949-11960. [PMID: 34612656 DOI: 10.1021/acs.langmuir.1c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integration of molecular liquid crystals (LCs) with functional proteins can provide new class of materials for potential applications in optical biosensing. However, hydrophobic nematic LCs (length ∼ 1-2 nm) and hydrophilic proteins, size ∼ O (nm), do not intermix without chemical modification of at least one of them. Bioconjugation of proteins with a polyethylene glycol-based polymeric surfactant (PS) can provide a core-shell system that is sequestered within nonaqueous LC (4-cyano-4'-pentylbiphenyl) microdroplets. However, the nature of interactions between the components and detailed understanding of the resultant hybrid microstructure remains unclear. Here, using a combination of isothermal titration calorimetry (ITC), fluorescence microscopy, and infrared-imaging spectroscopy, we show that strong hydrophobic interactions between the LC and PS drives the sequestration of a myoglobin-PS (Mb-PS; dispersed in the aqueous phase) into the LC spherical microdroplets or even into a bulk LC phase. The average values of both, the binding constant and the standard molar enthalpy change, are increased by approximately a factor of 2.5 times when the unmodified Mb is conjugated to the PS. Small-angle X-ray scattering studies reveal that LC molecules act as a solvent for the Mb-PS conjugate; furthermore, the LC long-range order is disturbed due to mixing, as exemplified by the change in its coherence length from 8.9 to 5.7 nm. Detailed all-atomistic molecular dynamic simulations for a three-component PS-water-LC system show a change in interaction energy of -144 kJ mol-1 PS-1 upon the contact of PS chains (initially dispersed in water) with LC and agree with the ITC experiments.
Collapse
Affiliation(s)
| | - Raju Kumar Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Stephen Mann
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Manna U, Zavala YM, Abbott NL, Lynn DM. Structured Liquid Droplets as Chemical Sensors that Function Inside Living Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42502-42512. [PMID: 34469102 DOI: 10.1021/acsami.1c12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report that micrometer-scale droplets of thermotropic liquid crystals (LCs) can be positioned inside living mammalian cells and deployed as chemical sensors to report the presence of toxins in extracellular environments. Our approach exploits droplets of LC enclosed in semi-permeable polymer capsules that enable internalization by cells. The LC droplets are stable in intracellular environments, but undergo optical changes upon exposure of cells to low, sub-lethal concentrations of toxic amphiphiles. Remarkably, LC droplets in intracellular environments respond to extracellular analytes that do not generate an LC response in the absence of cellular internalization. They also do not respond to other chemical stimuli or processes associated with cell growth or manipulation in culture. Our results suggest that droplet activation involves the transport and co-adsorption of amphiphilic toxins and other lipophilic cell components to the surfaces of internalized droplets. This work provides fundamentally new designs of biotic-abiotic systems that can report sensitively and selectively on the presence of select chemical agents outside cells and provides a foundation for the design of structured liquid droplets that can sense and report on other biochemical or metabolic processes inside cells.
Collapse
Affiliation(s)
- Uttam Manna
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Yashira M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Hong PTK, Jang CH. Simple, sensitive technique for α-amylase detection facilitated by liquid crystal-based microcapillary sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Huang X, Ye Z, Shang Y, He Y, Meng H, Dong Y, Qu Z, Liu Y, Xu S, Liu H. Effect of Single/Mixed Surfactant Systems on Orientations of Liquid Crystals and Interaction of Proteins with Surfactants at Fluid Interfaces. Aust J Chem 2021. [DOI: 10.1071/ch21063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of single surfactant systems, i.e, quaternary ammonium-based gemini surfactants with different spacers and alkyl chain lengths (m-n-m; m=12, n=2, 3, 4, 6; n=3, m=12, 14, 16), halogen-free surface-active ionic liquid (HF-SAILs) with different symmetries ([Cnmim][C12H25SO4]; n=6, 8, 10, 12), and single-chain cationic surfactants including 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) and dodecyltrimethylammonium bromide (DTAB), along with certain combinations of different surfactants (12-3-12/[C12mim]Br and 12-3-12/DTAB) were applied to an aqueous/liquid crystal interface (ALI). All the surfactants could induce an orientational transition of liquid crystals (LCs) from a planar to homeotropic state, which caused a bright-to-dark optical shift. It was proved that double-chain surfactants and the mixed surfactants inclined to adsorb at the ALI triggering the orientational transition. Inspiringly, a quicker and more sensitive dark-to-bright optical response was observed for mixed surfactant system-decorated interfaces in contact with proteins (such as bovine serum albumin (BSA), lysozyme, and trypsin) as opposed to the single surfactant systems. The ALI decorated by the 12-3-12/[C12mim]Br system was particularly efficient and exhibited the most sensitive optical response for BSA (0.01ngmL−1). The order parameters (SCD) of surfactants tails at the interface and the free energy of proteins with 12-3-12 and [C12mim]Br were calculated, respectively. The results explain that the 12-3-12/[C12mim]Br-laden ALI shows a quicker and more sensitive optical response for BSA. This work inspired us to study mixed surfactant systems-decorated LC interfaces and further provides new insights for different chemical and biological applications.
Collapse
|
7
|
Luan C, Luan H, Luo D. Application and Technique of Liquid Crystal-Based Biosensors. MICROMACHINES 2020; 11:E176. [PMID: 32046326 PMCID: PMC7074608 DOI: 10.3390/mi11020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022]
Abstract
Liquid crystal biosensors are based on changes in the orientation of liquid crystal molecules induced by specific bonding events of biomolecules. These biosensors are expected to serve as a promising system to detect biomolecules, biomolecular activity, and even small chemical molecules because they are inexpensive, sensitive, simple, effective, and portable. Herein, we introduce the principle and fabrication of liquid crystal biosensors and review the research progress in signal-amplified technology for liquid crystal sensing and its application in the detection of viruses, bacteria, proteins, nucleic acids, and small chemical molecules. In addition, the current theoretical and practical issues related to liquid crystal biosensors were investigated.
Collapse
Affiliation(s)
- Chonglin Luan
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haipei Luan
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48208, USA
| | - Dawei Luo
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
8
|
Kim Hong PT, Jang CH. Sensitive and label-free liquid crystal-based optical sensor for the detection of malathion. Anal Biochem 2020; 593:113589. [PMID: 31978456 DOI: 10.1016/j.ab.2020.113589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
In this paper, we report the development of a rapid and simple, liquid crystal (LC)-based aptasensor that enables the detection of malathion (MA) using the orientation properties of liquid crystals. This sensor is composed of aptamers immobilized on a surface decorated with a self-assembled monolayer of (3-glycidyloxypropyl)trimethoxysilane (GOPS) and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). When MA interacts with the immobilized aptamers, an orientational change in the LCs, from homeotropic to random, is induced. This orientational change generates visible optical responses observed as shifts from dark to bright images under a polarized optical microscope (POM). This sensing system has a linear detection range from 0.8 to 50 pM, with a correlation coefficient of 0.9922, and a limit of detection (LOD) of 2.5 pM (≈0.826 pg/mL). Our proposed aptasensor has good specificity and sensitivity to MA in tap water and soil. Moreover, this sensor suggests a promising strategy for simple, rapid testing for various insecticide residues.
Collapse
Affiliation(s)
- Pham Thi Kim Hong
- Department of Chemistry, Gachon University, Gyeonggi-do, Seongnam-si, Sujeong-gu, Seongnam-daero 1342, 461-701, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Gyeonggi-do, Seongnam-si, Sujeong-gu, Seongnam-daero 1342, 461-701, Republic of Korea.
| |
Collapse
|
9
|
Influence of polymer networks on the sensor properties of hydrogel dispersed liquid crystal droplets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Bao P, Paterson DA, Harrison PL, Miller K, Peyman S, Jones JC, Sandoe J, Evans SD, Bushby RJ, Gleeson HF. Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. LAB ON A CHIP 2019; 19:1082-1089. [PMID: 30785139 PMCID: PMC6484679 DOI: 10.1039/c8lc01291a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/28/2019] [Indexed: 05/22/2023]
Abstract
We describe a novel biosensor based on phospholipid-coated nematic liquid crystal (LC) droplets and demonstrate the detection of Smp43, a model antimicrobial peptide (AMP) from the venom of North African scorpion Scorpio maurus palmatus. Mono-disperse lipid-coated LC droplets of diameter 16.7 ± 0.2 μm were generated using PDMS microfluidic devices with a flow-focusing configuration and were the target for AMPs. The droplets were trapped in a bespoke microfluidic trap structure and were simultaneously treated with Smp43 at gradient concentrations in six different chambers. The disruption of the lipid monolayer by the Smp43 was detected (<6 μM) at concentrations well within its biologically active range, indicated by a dramatic change in the appearance of the droplets associated with the transition from a typical radial configuration to a bipolar configuration, which is readily observed by polarizing microscopy. This suggests the system has feasibility as a drug-discovery screening tool. Further, compared to previously reported LC droplet biosensors, this LC droplet biosensor with a lipid coating is more biologically relevant and its ease of use in detecting membrane-related biological processes and interactions has the potential for development as a reliable, low-cost and disposable point of care diagnostic tool.
Collapse
Affiliation(s)
- Peng Bao
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | - Daniel A. Paterson
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | | | - Keith Miller
- Biomolecular Research Centre
, Sheffield Hallam University
,
Sheffield
, UK
| | - Sally Peyman
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | - J. Cliff Jones
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | - Jonathan Sandoe
- Leeds Institute of Biomedical & Clinical Science
, University of Leeds
,
Leeds
, UK
| | - Stephen D. Evans
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | - Richard J. Bushby
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| | - Helen F. Gleeson
- School of Physics and Astronomy
, University of Leeds
,
Leeds
, UK
.
;
;
| |
Collapse
|
11
|
Qi L, Hu Q, Kang Q, Yu L. Fabrication of Liquid-Crystal-Based Optical Sensing Platform for Detection of Hydrogen Peroxide and Blood Glucose. Anal Chem 2018; 90:11607-11613. [PMID: 30184427 DOI: 10.1021/acs.analchem.8b03062] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid and accurate determination of H2O2 is of great importance in practical applications. In this study, we demonstrate construction of liquid-crystal (LC)-based sensing platforms for sensitive and real-time detection of H2O2 with high accuracy for the first time. Single-stranded DNA (ssDNA) adsorbed onto the surface of nanoceria is released to the aqueous solution in the presence of H2O2, which disrupts arrangement of the self-assembled cationic surfactant monolayer decorated at the aqueous/LC interface. Thus, the orientation of LCs changes from a homeotropic to planar state, leading to change in the optical response from dark-to-bright appearance. As H2O2 can be produced during oxidation of glucose by glucose oxidase (GOx), detection of glucose is also fulfilled by employing the H2O2 sensing platform. Our system can detect H2O2 and glucose with concentrations as low as 28.9 nM and 0.52 μM, respectively. It shows high promise of using LC-based sensors for the detection of H2O2 and its relevant biomarkers in practical applications.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| | - Qiongzheng Hu
- Salk Institute for Biological Studies , 10010 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| |
Collapse
|
12
|
Xiao F, Tan H, Wu Y, Liao S, Wu Z, Shen G, Yu R. A novel logic gate based on liquid-crystals responding to the DNA conformational transition. Analyst 2018; 141:2870-3. [PMID: 27102781 DOI: 10.1039/c6an00504g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Described herein is a novel liquid crystal (LC)-based DNA logic gate constructed via employing the reorientation of LCs triggered by metal-ion-mediated DNA probe conformational changes.
Collapse
Affiliation(s)
- Fubing Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hui Tan
- Technology Center of Juhua Group, Quzhou, 324004, P. R. China.
| | - Yan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Shuzhen Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guoli Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
13
|
Zhang J, Su X, Yang D, Luan C. Label-free liquid crystal biosensor for cecropin B detection. Talanta 2018; 186:60-64. [PMID: 29784409 DOI: 10.1016/j.talanta.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 01/15/2023]
Abstract
A label-free liquid crystal (LC) biosensor based on orientation changes of LC molecules was reported for the detection of cecropin B. The homeotropic-to-tilted alignment transition of LC molecules, induced by the specific binding event between cecropin B and anti-cecropin B antibody immobilized via glutaraldehyde, could result in obvious change of the optical appearance from a dark to a bright response and as a result, the detection limit of cecropin B was as low as 50 ng/mL. The average gray-scale intensities (GIs) of optical appearances were calculated to quantitatively analyse cecropin B concentrations. This study offers a simple, highly sensitive and specific, lable-free method for cecropin B detection.
Collapse
Affiliation(s)
- Jiao Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiuxia Su
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chonglin Luan
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518088, China.
| |
Collapse
|
14
|
Sidiq S, Prasad GVRK, Mukhopadhaya A, Pal SK. Poly(l-lysine)-Coated Liquid Crystal Droplets for Cell-Based Sensing Applications. J Phys Chem B 2017; 121:4247-4256. [DOI: 10.1021/acs.jpcb.7b00551] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumyra Sidiq
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - G. V. R. Krishna Prasad
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - Arunika Mukhopadhaya
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - Santanu Kumar Pal
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
15
|
Wang Y, Hu Q, Tian T, Gao Y, Yu L. A nonionic surfactant-decorated liquid crystal sensor for sensitive and selective detection of proteins. Anal Chim Acta 2016; 937:119-26. [DOI: 10.1016/j.aca.2016.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
|
16
|
Hussain Z, Qazi F, Ahmed MI, Usman A, Riaz A, Abbasi AD. Liquid crystals based sensing platform-technological aspects. Biosens Bioelectron 2016; 85:110-127. [PMID: 27162142 DOI: 10.1016/j.bios.2016.04.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.
Collapse
Affiliation(s)
- Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan.
| | - Farah Qazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Muhammad Imran Ahmed
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Adil Usman
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Asim Riaz
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Amna Didar Abbasi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
17
|
Guo X, Manna U, Abbott NL, Lynn DM. Covalent Immobilization of Caged Liquid Crystal Microdroplets on Surfaces. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26892-903. [PMID: 26562466 DOI: 10.1021/acsami.5b09595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microscale droplets of thermotropic liquid crystals (LCs) suspended in aqueous media (e.g., LC-in-water emulsions) respond sensitively to the presence of contaminating amphiphiles and, thus, provide promising platforms for the development of new classes of droplet-based environmental sensors. Here, we report polymer-based approaches to the immobilization of LC droplets on surfaces; these approaches introduce several new properties and droplet behaviors and thus also expand the potential utility of LC droplet-based sensors. Our approach exploits the properties of microscale droplets of LCs contained within polymer-based microcapsule cages (so-called "caged" LCs). We demonstrate that caged LCs functionalized with primary amine groups can be immobilized on model surfaces through both weak/reversible ionic interactions and stronger reactive/covalent interactions. We demonstrate using polarized light microscopy that caged LCs that are covalently immobilized on surfaces can undergo rapid and diagnostic changes in shape, rotational mobility, and optical appearance upon the addition of amphiphiles to surrounding aqueous media, including many useful changes in these features that cannot be attained using freely suspended or surface-adsorbed LC droplets. Our results reveal these amphiphile-triggered orientational transitions to be reversible and that arrays of immobilized caged LCs can be used (and reused) to detect both increases and decreases in the concentrations of model contaminants. Finally, we report changes in the shapes and optical appearances of LC droplets that occur when immobilized caged LCs are removed from aqueous environments and dried, and we demonstrate that dried arrays can be stored for months without losing the ability to respond to the presence of analytes upon rehydration. Our results address practical issues associated with the preparation, characterization, storage, and point-of-use application of conventional LC-in-water emulsions and provide a basis for approaches that could enable the development of new "off-the-shelf" LC droplet-based sensing platforms.
Collapse
Affiliation(s)
- Xuanrong Guo
- Department of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Uttam Manna
- Department of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Nguyen TT, Han GR, Jang CH, Ju H. Optical birefringence of liquid crystals for label-free optical biosensing diagnosis. Int J Nanomedicine 2015; 10 Spec Iss:25-32. [PMID: 26347013 PMCID: PMC4554411 DOI: 10.2147/ijn.s88286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE We present a polarization-sensitive optical detection platform for label-free quantitative optical biosensing diagnosis using liquid crystals (LCs). This is capable of determining quantitatively the optical birefringence of optical cells containing LCs, whose orientation depends on the immobilized biomolecules. PATIENTS AND METHODS This technique uses a polarization-dependent double-port detection without any polarizer at a single wavelength and removes the need of aligning optical cells of LCs in the azimuthal direction, with respect to the light path through the optical cell. Thus, this technique enables a stand-alone detection in a relatively compact format without an additional optical instrument, such as a retardation compensator, a Michael-Levy chart, and a spectrophotometer, in order to determine the optical birefringence quantitatively. RESULTS We demonstrate that bovine serum albumin immobilized on the gold surface of the cell hybrid interfaces that support both homeotropic and planar anchoring of LCs causes optical phase retardation change which can be determined quantitatively. We also provide estimation of the zenithal orientation of LCs near the gold surface of the hybrid interfaces, based on the phase retardation determined. The estimated limit of bovine serum albumin detection is approximately 2.1 μM. CONCLUSION This optical technique with LCs can serve an optical platform for label-free quantitative diagnosis of proteins in a real time manner.
Collapse
Affiliation(s)
- Tan Tai Nguyen
- Department of Bionano Technology, Gachon University, Seongnam-City, South Korea
| | - Gyeo-Re Han
- Department of Nano-Chemistry, Gachon University, Seongnam-City, South Korea
| | - Chang-Hyun Jang
- Department of Bionano Technology, Gachon University, Seongnam-City, South Korea ; Department of Nano-Chemistry, Gachon University, Seongnam-City, South Korea
| | - Heongkyu Ju
- Department of Bionano Technology, Gachon University, Seongnam-City, South Korea ; Department of Nano-Physics, Gachon University, Seongnam-City, South Korea ; Neuroscience Institute, Gil Hospital, Incheon, South Korea
| |
Collapse
|
19
|
Use of liquid crystals for imaging different inclusion abilities of α-cyclodextrin and β-cyclodextrin toward cetyltrimethyl ammonium bromide. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals. J Biosci Bioeng 2015; 120:193-8. [DOI: 10.1016/j.jbiosc.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/14/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022]
|
21
|
Tan LN, Abbott NL. Dynamic anchoring transitions at aqueous–liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins. J Colloid Interface Sci 2015; 449:452-61. [DOI: 10.1016/j.jcis.2015.01.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
22
|
Sidiq S, Verma I, Pal SK. pH-Driven Ordering Transitions in Liquid Crystal Induced by Conformational Changes of Cardiolipin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4741-4751. [PMID: 25856793 DOI: 10.1021/acs.langmuir.5b00798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an investigation of interfacial phenomena occurring at aqueous-liquid crystal (LC) interfaces that triggers an orientational ordering transition of the LC in the presence of cardiolipin (CL) by varying pH, salt concentration and valence. In particular, the effects of three different conformational isomeric forms of the CL are observed to cause the response of the LC ordering to vary significantly from one to another at those interfaces. An ordering transition of the LC was observed when the CL is mostly in undissociated (at pH 2) and/or in bicyclic (at pH 4) conformation in which LC shows changes in the optical appearance from bright to dark. By contrast, no change in the optical appearance of the LC was observed when the pH of the system increases to 8 or higher in which the CL mostly exists in the open conformation. Fluorescence microscopy measurements further suggest that pH-dependent conformational forms of the CL have different ability to self-assemble (thus different packing efficiency) at aqueous-LC interfaces leading to dissimilar orientational behavior of the LC. Specifically, we found that change in headgroup-headgroup repulsion of the central phosphatidyl groups of the CL plays a key role in tuning the lipid packing efficiency and thus responses to interfacial phenomena. Orientational ordering transition of the LC was also observed as a function of increasing the ionic strength (buffer capacity) and strongly influenced in the presence of mono and divalent cations. Langmuir-Blodgett (LB) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements provide further insight in modulation of the lipid packing efficiency and alkyl chain conformation of the CL at different pH and ionic conditions. Overall, the results presented in this paper establish that LCs offer a promising approach to differentiate different conformations (label free detection) of the CL through ordering transition of the LC at aqueous-LC interfaces.
Collapse
Affiliation(s)
- Sumyra Sidiq
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| | - Indu Verma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| |
Collapse
|
23
|
Lag-burst kinetics of surfactant displacement from the liquid crystal/aqueous interface by bile acids. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Das D, Sidiq S, Pal SK. A Simple Quantitative Method to Study Protein-Lipopolysaccharide Interactions by Using Liquid Crystals. Chemphyschem 2015; 16:753-60. [DOI: 10.1002/cphc.201402739] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/02/2014] [Indexed: 11/08/2022]
|
25
|
Wang X, Yang P, Mondiot F, Li Y, Miller DS, Chen Z, Abbott NL. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides. Chem Commun (Camb) 2015; 51:16844-7. [DOI: 10.1039/c5cc06996c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ordering at phospholipid-decorated interfaces of liquid crystals is influenced by the secondary structure of oligopeptides.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Pei Yang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Frederic Mondiot
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Yaoxin Li
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Daniel S. Miller
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|
26
|
ZHANG M, JANG CH. Anchoring Transitions of Liquid Crystals for Optical Amplification of Phospholipid Oxidation Inhibition by Ascorbic Acid. ANAL SCI 2015; 31:1329-33. [DOI: 10.2116/analsci.31.1329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
He S, Liang W, Cheng KL, Fang J, Wu ST. Bile acid-surfactant interactions at the liquid crystal/aqueous interface. SOFT MATTER 2014; 10:4609-4614. [PMID: 24825535 DOI: 10.1039/c4sm00486h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction between bile acids and surfactants at interfaces plays an important role in fat digestion. In this paper, we study the competitive adsorption of cholic acid (CA) at the sodium dodecyl sulfate (SDS)-laden liquid crystal (LC)/aqueous interface formed with cyanobiphenyl (nCB, n = 5-8) and the mixture of 5CB with 4-(4-pentylcyclohexyl)benzonitrile (5PCH). We find that the critical concentration of CA required to displace SDS from the interface linearly decreases from 160 μM to 16 μM by reducing the alkyl chain length of nCB from n = 8 to n = 5 and from 16 μM to 1.5 μM by increasing the 5PCH concentration from 0 wt% to 19 wt% in the 5PCH-5CB binary mixture. Our results clearly demonstrate that the sensitivity of 5PCH-5CB mixtures for monitoring the interaction between CA and SDS at the LC/aqueous interface can be increased by one order of magnitude, compared to 5CB.
Collapse
Affiliation(s)
- Sihui He
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | |
Collapse
|
28
|
Zhang M, Jang CH. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer. Chemphyschem 2014; 15:2569-74. [PMID: 24850496 DOI: 10.1002/cphc.201402120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 01/08/2023]
Abstract
Liquid-crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly-L-lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water-LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.
Collapse
Affiliation(s)
- Minmin Zhang
- Department of Chemistry, Gachon University, Seongnam-Si, Gyeonggi-Do 461-701 (Korea)
| | | |
Collapse
|
29
|
Tan LN, Wiepz GJ, Miller DS, Shusta EV, Abbott NL. Liquid crystal droplet-based amplification of microvesicles that are shed by mammalian cells. Analyst 2014; 139:2386-96. [PMID: 24667742 PMCID: PMC4212983 DOI: 10.1039/c3an02360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane-derived microvesicles (MVs) shed by cells are being investigated for their role in intercellular communication and as potential biomarkers of disease, but facile and sensitive methods for their analysis do not exist. Here we demonstrate new principles for analysis of MVs that use micrometer-sized droplets of liquid crystals (LCs) to amplify MVs that are selectively captured via antibody-mediated interactions. The influence of the MVs on the micrometer-sized LC droplets is shown to be readily quantified via use of flow cytometry. The methodology was developed using MVs shed by epidermoid carcinoma A431 cells that contain epidermal growth factor receptor (EGFR) as an important and representative example of MVs containing signaling proteins that play a central role in cancer. The LC droplets were found to be sensitive to 10(6) MVs containing EGFR (relative to controls using isotype control antibody) and to possess a dynamic range of response across several orders of magnitude. Because the 100 nm-sized MVs captured via EGFR generate an optical response in the micrometer-sized LC droplets that can be readily detected by flow cytometry in light scattering mode, the approach possesses significant advantages over direct detection of MVs by flow cytometry. The LC droplets are also substantially more sensitive than techniques such as immunoblotting because the lipid-component of the MVs serves to amplify the antibody-mediated capture of the target proteins in the MVs. Other merits of the approach are defined and discussed in the paper.
Collapse
Affiliation(s)
- Lie Na Tan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
30
|
Park SJ, Min J, Hu QZ, Jang CH. Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3162-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
A simple strategy for detecting synthetic polymers on solid surfaces using liquid crystal. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3015-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface. Colloids Surf B Biointerfaces 2013; 108:142-6. [PMID: 23537831 DOI: 10.1016/j.colsurfb.2013.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the orientational behavior of liquid crystals (LCs) which is associated with the chitosan-disrupted phospholipid membrane at the aqueous/LC interface. The optical response of LCs changed from dark to bright after the transfer of an aqueous solution of chitosan onto the LC interface decorated with self-assembled monolayers of a negatively charged phospholipid, dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The chitosan-lipid interactions induced a rearrangement of the membrane, and thus, resulted in an orientational transition of LCs from a homeotropic to a planar state, thereby triggering a dark-to-bright shift in the optical response. We observed that LCs exhibited a bright-to-dark shift after an aqueous solution of lysozyme was transferred onto the chitosan-disrupted membrane, which implied that an enzymatic reaction between lysozyme and chitosan took place. We found that the addition of bovine serum album (BSA) induced a bright-to-dark change in the optical response; while LCs remained to appear bright after the transfer of chymotrypsin onto the aqueous/LC interface. We then further examined the interactions between other polyelectrolytes and phospholipid membranes.
Collapse
|
33
|
Carlton RJ, Hunter JT, Miller DS, Abbasi R, Mushenheim PC, Tan LN, Abbott NL. Chemical and biological sensing using liquid crystals. LIQUID CRYSTALS REVIEWS 2013; 1:29-51. [PMID: 24795857 PMCID: PMC4005293 DOI: 10.1080/21680396.2013.769310] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output.
Collapse
Affiliation(s)
- Rebecca J Carlton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jacob T Hunter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Daniel S Miller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Reza Abbasi
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Peter C Mushenheim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lie Na Tan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
34
|
Park MK, Jang CH. High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.10.3269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Hu QZ, Jang CH. A simple strategy to monitor lipase activity using liquid crystal-based sensors. Talanta 2012; 99:36-9. [DOI: 10.1016/j.talanta.2012.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
36
|
Hu QZ, Jang CH. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1791-1795. [PMID: 22394113 DOI: 10.1021/am300043d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, we developed a new type of liquid crystal (LC)-based sensor for the real-time and label-free monitoring of enzymatic activity through changes in the orientation of LCs coupled to the interactions between polyelectrolyte and phospholipid. The LCs changed from dark to bright after an aqueous solution of poly-l-lysine (PLL) was transferred onto a self-assembled monolayer of the phospholipid, dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG), at the aqueous/LC interface. Interactions between the positively charged PLL and the negatively charged DOPG drove the reorganization of the phospholipid membrane, which induced an orientational transition in the LCs from a homeotropic to planar state. Since the serine endopeptidase trypsin can enzymatically catalyze the hydrolysis of PLL, the dark-to-bright shift in the optical response was not observed after transferring a mixed solution of PLL and trypsin onto the DOPG-decorated LC interface, indicating that no orientational transitions in the LCs occurred. However, the optical response from dark to bright was observed when the mixture in the optical cell was replaced by an aqueous solution of PLL. Control experiments with trypsin or an aqueous mixture of PLL and deactivated trypsin further confirmed the feasibility of this approach. The detection limit of trypsin was determined to be ~1 μg/mL. This approach holds great promise for use in the development of LC-based sensors for the detection of enzymatic reactions in cases where the biological polyelectrolyte substrates of enzymes could disrupt the organization of the membrane and induce orientational transitions of LCs at the aqueous/LC interface.
Collapse
Affiliation(s)
- Qiong-Zheng Hu
- Department of BioNano Technology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, Korea
| | | |
Collapse
|
37
|
Hu QZ, Jang CH. A new strategy for imaging biomolecular events through interactions between liquid crystals and oil-in-water emulsions. Analyst 2012; 137:5204-7. [DOI: 10.1039/c2an35607d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|