1
|
|
2
|
LIU LL, QI XM, ZOU BJ, SONG QX, ZHOU GH. Quantitative Detection of Gene Methylated Level of Stool Samples Based on Invader Assay Coupled with Real-time Polymerase Chain Reaction and Its Application in Non-invasive Screening of Colorectal Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Liu YL, Wu HP, Zhou Q, Song QX, Rui JZ, Guan XX, Zhou GH, Zou BJ. Controllable extension of hairpin-structured flaps to allow low-background cascade invasive reaction for a sensitive DNA logic sensor for mutation detection. Chem Sci 2017; 9:1666-1673. [PMID: 29675214 PMCID: PMC5887964 DOI: 10.1039/c7sc04210h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
A sensitive DNA logic sensor was constructed based on a controllable-extension bridged cascade invasive reaction.
A DNA logic sensor was constructed for gene mutation analysis based on a novel signal amplification cascade by controllably extending a hairpin-structured flap to bridge two invasive reactions. The detection limit was as low as 0.07 fM, and the analytical specificity is high enough to unambiguously pick up 0.02% mutants from a large amount of wild-type DNA. Gene mutations related to the personalized medicine of gefitinib, a typical tyrosine kinase inhibitor, were analyzed by the DNA logic sensor with only a 15 minute response time. Successful assay of tissue samples and cell-free plasma DNA indicates that the new concept we proposed here could benefit clinicians for straightforward prescription of a mutation-targeted drug.
Collapse
Affiliation(s)
- Yun-Long Liu
- Department of Pharmacology , Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China . ; .,State Key Laboratory of Natural Medicines , Department of Biomedical Engineering , School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Hai-Ping Wu
- Huadong Research Institute for Medicine and Biotechnics , Nanjing 210002 , China
| | - Qiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education , China Pharmaceutical University , Nanjing 210009 , China
| | - Qin-Xin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education , China Pharmaceutical University , Nanjing 210009 , China
| | - Jian-Zhong Rui
- Department of Pharmacology , Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China . ;
| | - Xiao-Xiang Guan
- Department of Pharmacology , Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China . ;
| | - Guo-Hua Zhou
- Department of Pharmacology , Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China . ;
| | - Bing-Jie Zou
- Department of Pharmacology , Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China . ;
| |
Collapse
|
4
|
Zhou Y, Wang Y, Wang X, Lu J. Polystyrene Microspheres Coupled with Hybridization Chain Reaction for Dual-Amplified Chemiluminescence Detection of Specific DNA Sequences. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Xu C, Wang X, Li H, Han C, Wang J, Wang Y, Liu S, Huang J. Branched RCA coupled with a NESA-based fluorescence assay for ultrasensitive detection of miRNA. NEW J CHEM 2017. [DOI: 10.1039/c7nj00404d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is the first report that branched-RCA coupled with NESA has been used for fluorescence assay of miRNA.
Collapse
Affiliation(s)
- Chenggong Xu
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xu Wang
- Shandong Yellow River Institute of Metrology
- Jinan 250022
- P. R. China
| | - Hui Li
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Cong Han
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jingfeng Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Su Liu
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
| |
Collapse
|
6
|
Furuie JL, Sun J, do Nascimento MMF, Gomes RR, Waculicz-Andrade CE, Sessegolo GC, Rodrigues AM, Galvão-Dias MA, de Camargo ZP, Queiroz-Telles F, Najafzadeh MJ, de Hoog SG, Vicente VA. Molecular identification of Histoplasma capsulatum using rolling circle amplification. Mycoses 2015; 59:12-9. [PMID: 26578301 DOI: 10.1111/myc.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/01/2022]
Abstract
Histoplasmosis is a systemic fungal disease that occurs worldwide, causing symptomatic infection mostly in immunocompromised hosts. Etiological agent is the dimorphic fungus, Histoplasma capsulatum, which occurs in soil contaminated with bird or bat droppings. Major limitation in recognition of H. capsulatum infections is the low awareness, since other diseases may have similar symptomatology. The molecular methods have gained importance because of unambiguous diagnostic ability and efficiency. The aim of this study was to develop and evaluate a padlock probe in view of rolling circle amplification (RCA) detection method which targets ITS (Internal Transcribed Spacer) rDNA of H. capsulatum enabling rapid and specific detection of the fungus in clinical samples. Two padlock probes were designed and one of these (HcPL2) allowed specific amplification of H. capsulatum DNA while no cross-reactivity was observed with fungi used as negative controls. This method proved to be effective for H. capsulatum specific identification and demonstrated to be faster than the traditional method of microbiological identification.
Collapse
Affiliation(s)
- Jason L Furuie
- Bioprocess Engineering and Biotechnology Department, Post-Graduation Program of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Mariana M F do Nascimento
- Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Caroline E Waculicz-Andrade
- Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Anderson M Rodrigues
- Cellular Biology Division, Microbiology, Immunology and Parasitology Department, Federal University of São Paulo, São Paulo, Brazil
| | | | - Zoilo P de Camargo
- Cellular Biology Division, Microbiology, Immunology and Parasitology Department, Federal University of São Paulo, São Paulo, Brazil
| | - Flávio Queiroz-Telles
- Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil.,Clinical Hospital of the Federal University of Paraná, Curitiba, Brazil
| | - Mohammad J Najafzadeh
- Parasitology and Mycology Department, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sybren G de Hoog
- Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Vania A Vicente
- Bioprocess Engineering and Biotechnology Department, Post-Graduation Program of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Basic Pathology Department, Post-Graduation Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Zhao G, Hu T, Li J, Wei H, Shang H, Guan Y. A RCA-based assay for analyzing individual strand break in DNA heteroduplex cleavage by restriction endonucleases. Chem Commun (Camb) 2015; 50:11930-3. [PMID: 25157639 DOI: 10.1039/c4cc05314a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a rapid and high-throughput assay based on rolling circle amplification, to distinguish individual strand cleavage of DNA duplexes by restriction endonucleases. As an illustration, we analyzed nicking activity of Nb.BbvCI and uneven cleavage of LNA modified DNA by EcoRI. This assay has potential for analyzing protein-DNA interactions.
Collapse
Affiliation(s)
- Guojie Zhao
- Key Laboratory of Medical Cell Biology (Ministry of Education), Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110001, China.
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Wang J, Zou B, Rui J, Song Q, Kajiyama T, Kambara H, Zhou G. Exponential amplification of DNA with very low background using graphene oxide and single-stranded binding protein to suppress non-specific amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1426-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Zou B, Song Q, Wang J, Liu Y, Zhou G. Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection. Chem Commun (Camb) 2014; 50:13722-4. [PMID: 25249213 DOI: 10.1039/c4cc06079b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An extension-block base in a molecular beacon enables beacon-assisted strand-displacement amplification to couple with invasive reaction efficiently by flap extension.
Collapse
Affiliation(s)
- Bingjie Zou
- Department of Pharmacology
- Jinling Hospital, Medical School of Nanjing University
- Nanjing, China
| | - Qinxin Song
- Department of Pharmacology
- Jinling Hospital, Medical School of Nanjing University
- Nanjing, China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Jianping Wang
- Department of Pharmacology
- Jinling Hospital, Medical School of Nanjing University
- Nanjing, China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Yunlong Liu
- Department of Pharmacology
- Jinling Hospital, Medical School of Nanjing University
- Nanjing, China
| | - Guohua Zhou
- Department of Pharmacology
- Jinling Hospital, Medical School of Nanjing University
- Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science
- Nanjing University
| |
Collapse
|
11
|
Cheng Y, Zhao J, Jia H, Yuan Z, Li Z. Ligase chain reaction coupled with rolling circle amplification for high sensitivity detection of single nucleotide polymorphisms. Analyst 2013; 138:2958-63. [PMID: 23535938 DOI: 10.1039/c3an36920j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a highly sensitive and homogeneous assay for the detection of single nucleotide polymorphisms (SNPs) by ligase chain reaction (LCR) coupled with rolling circle amplification (RCA). The LCR probes include one pair of probes and a padlock probe (PLP). In the LCR, one pair of probes composed of X and Y, perfectly hybridize with the upper strand of the target DNA after thermal denaturation. They are then ligated by the thermostable ligase to form the ligation product of XY. At the same time, the PLP hybridizes with the lower strand of the target DNA and are ligated to form the circular PLP (cPLP). After repeated cycles of denaturation, annealing, and ligation, the target DNA is amplified exponentially to generate a large number of XY and cPLPs. Subsequently, RCA is triggered by the cPLP as a template and XY as a primer, producing large numbers of long strand DNA products, which are detected by binding with the fluorescent dye, SYBR Green I, in a homogeneous manner. This method is simple, and avoids the need for detection of the LCR products with labeled probes and complex separation steps. The assay is sensitive and specific enough to detect a 1 fM target DNA molecule. It is possible to accurately determine the allele frequency as low as 1.0%. The LCR coupled with RCA assay extends the application of the LCR and RCA, and provides a new strategy for detecting SNPs as well as nucleic acid analysis, immunoassay, and molecular diagnosis.
Collapse
Affiliation(s)
- Yongqiang Cheng
- Key Laboratory of Medicine Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environment Science, Hebei University, Baoding, 071002, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Wang X, Lau C, Kai M, Lu J. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst 2013; 138:2691-7. [PMID: 23515350 DOI: 10.1039/c3an36885h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | |
Collapse
|
13
|
Yin BC, Liu YQ, Ye BC. Sensitive Detection of MicroRNA in Complex Biological Samples via Enzymatic Signal Amplification Using DNA Polymerase Coupled with Nicking Endonuclease. Anal Chem 2013; 85:11487-93. [DOI: 10.1021/ac403302a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yu-Qiang Liu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Abstract
Although many approaches based on template replication were developed and applied in DNA detection, cross-contamination from amplicons is always a vexing problem. Thus, signal amplification is preferable for DNA detection due to its low risk of cross-contamination from amplicons. Here, we proposed a cascade enzymatic signal amplification (termed as CESA) by coupling Afu flap endonuclease with nicking endonuclease, including three steps: invasive signal amplification, flap ligation, and nicking endonuclease signal amplification. Because of the advantages of low risk of contamination, no sequence requirement of target DNA, and the universal reaction conditions for any target detection, CESA has a great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Bingjie Zou
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | |
Collapse
|
15
|
Bi S, Zhao T, Luo B, Zhu JJ. Hybridization chain reaction-based branched rolling circle amplification for chemiluminescence detection of DNA methylation. Chem Commun (Camb) 2013; 49:6906-8. [DOI: 10.1039/c3cc43353f] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Bi S, Cui Y, Li L. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. Analyst 2012; 138:197-203. [PMID: 23148205 DOI: 10.1039/c2an36118c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ultrasensitive and highly selective method for polymerase chain reaction-free (PCR-free) messenger RNA (mRNA) expression profiling is developed through a novel cross-rolling circle amplification (C-RCA) process based on DNA-rotaxane nanostructures. Two species of DNA pseudorotaxane (DPR) superstructures (DPR-I and DPR-II) are assembled by threading a linear DNA rod through a double-stranded DNA (dsDNA) ring containing two single-stranded gaps. In this assay, cDNA that is specific for β-actin (ACTB) mRNA is taken as a model analyte. Upon the introduction of the target cDNA, the cDNA and the biotin-modified primer are hybridized to the single-stranded regions of the DNA rod and the gap-ring, respectively. As a result, the DPR-I dethreads into free DNA macrocycle and a dumbbell-shaped DNA nanostructure. In the presence of DNA polymerase/dNTPs, two release-DNA on the DPR-I are replaced by polymerase with strand-displacement activity, which can act as the input of the DPR-II to trigger the dethreading of DPR-II and the RCA reaction, releasing another two specified release-DNA strands those in turn serve as the "mimic cDNA" for DPR-I. The C-RCA reaction then proceeds autonomously. To overcome the high background induced by hemin itself, the biotinylated rolling circle products are captured by streptavidin-coated MNPs, achieving a detection limit as low as 0.1 zmol cDNA. The assay also exhibits an excellent selectivity due to its unique DNA nanostructure fabricated through base pairing hybridization. The ACTB mRNA expression in mammary cancer cells (MCF-7) is successfully detected.
Collapse
Affiliation(s)
- Sai Bi
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | |
Collapse
|