1
|
Ding M, Niu H, Guan P, Hu X. Molecularly imprinted sensor based on poly-o-phenylenediamine-hydroquinone polymer for β-amyloid-42 detection. Anal Bioanal Chem 2023; 415:1545-1557. [PMID: 36808273 DOI: 10.1007/s00216-023-04552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 02/21/2023]
Abstract
A sensitive and selective molecularly imprinted polymer (MIP) sensor was developed for the determination of amyloid-β (1-42) (Aβ42). The glassy carbon electrode (GCE) was successively modified with electrochemical reduction graphene oxide (ERG) and poly(thionine-methylene blue) (PTH-MB). The MIPs were synthesized by electropolymerization with Aβ42 as a template and o-phenylenediamine (o-PD) and hydroquinone (HQ) as functional monomers. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CC), and differential pulse voltammetry (DPV) were used to study the preparation process of the MIP sensor. The preparation conditions of the sensor were investigated in detail. In optimal experimental conditions, the response current of the sensor was linear in the range of 0.12-10 μg mL-1 with a detection limit of 0.018 ng mL-1. The MIP-based sensor successfully detected Aβ42 in commercial fetal bovine serum (cFBS) and artificial cerebrospinal fluid (aCSF).
Collapse
Affiliation(s)
- Minling Ding
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Huizhe Niu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ping Guan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Xiaoling Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
2
|
Chen Z, Gu Y, Cao W, Zhang T, Wang C, Sun F, Ding W. A Hybrid Ratiometric Probe for the Differential Detection of Testosterone and Iron Ions Based on Simultaneous Response of Fluorescence and Light Scattering of Gold Nanoclusters. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Khan ZA, Park S. AuNPs- Aβ-Ni-HRP sandwich assay: A new sensitive colorimetric method for the detection of Aβ 1-40. Talanta 2022; 237:122946. [PMID: 34736673 DOI: 10.1016/j.talanta.2021.122946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Amyloid β-peptide (Aβ) is a key predictor for preclinical diagnosis of Alzheimer's disease (AD) and vascular diseases. In this work, we propose a gold nanoparticle (AuNPs)-Aβ-nickel (Ni)-horseradish peroxidase (HRP) based colorimetric assay for the detection of Aβ1-40. The consecutive binding of Aβ1-40 to AuNPs and metal ions is designed and examined for Aβ-specific aggregation of AuNPs and the generation of quantitative colorimetric signals. The affinity of Aβ1-40 towards various metal ions was studied first, and two metal ions, Cu and Ni, were specifically tested with Metal Ion-Binding Site Prediction (MIB) and High-resolution Electrospray Ionization Mass Spectrometry (HR-ESI-MS). Subsequently, the binding of Aβ1-40 and AuNPs was examined, and the binding between Aβ-AuNPs and Ni-HRP was finally analyzed by UV-Vis and nano-zetasizer. Based on the characterized dual binding of Aβ1-40, a colorimetric sandwich assay was developed and the analytical performance of the developed assay has been evaluated with standard solutions and human serum samples. Good linearity within a range from 0 nM to 10 nM was found. The detection limits of 0.22 nM in the standard sample and 0.23 nM in the human serum sample have been demonstrated. The newly developed colorimetric sandwich assay is a short, simple, antibody-free assay and achieves high sensitivity with only 100 μL Aβ1-40 samples. The assay has immense potential for the detection of Aβ1-40 in biological or biomedical diagnosis.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
4
|
Ding M, Shu Q, Zhang N, Yan C, Niu H, Li X, Guan P, Hu X. Electrochemical Immunosensor for the Sensitive Detection of Alzheimer's Biomarker Amyloid‐β (1–42) Using the Heme‐amyloid‐β (1–42) Complex as the Signal Source. ELECTROANAL 2021. [DOI: 10.1002/elan.202100392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Minling Ding
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qi Shu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Nan Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Chaoren Yan
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Huizhe Niu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ping Guan
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Xiaoling Hu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
5
|
Wang C, Li J. Fluorescence method for kanamycin detection based on the conversion of G-triplex and G-quadruplex. Anal Bioanal Chem 2021; 413:7073-7080. [PMID: 34628526 DOI: 10.1007/s00216-021-03676-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
A versatile fluorescence scaffold was constructed by connecting a G-triplex sequence (G31) with G-rich DNA (aptamer of kanamycin) and using thioflavin T (ThT) as the fluorescent molecule. With the assistance of an aptamer, the G-quadruplex DNA structure was fabricated using G31 as three strands and the aptamer as the fourth strand. Due to the parallel planar morphology of the final products, which was favorable for ThT binding and which restricted the rotation of the aromatic rings of ThT, the fluorescence signal intensity of ThT was significantly enhanced. Because of the specific interaction of aptamer and kanamycin, in addition to the greater ability for kanamycin to bind with G-triplex than ThT, the conformation of G-quadruplex DNA was changed; in addition, ThT was dissociated from the aptamer-G31, and therefore a 'turn-on' to 'turn-off' detection principle was applied for kanamycin detection, which yielded reasonable sensitivity and selectivity. The detection range was 50-2000 nM, with a limit of detection of 1.05 nM. Our proposed method was thus successfully applied for kanamycin determination in pork, chicken, and beef samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jiangyu Li
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
6
|
Yin Y, Chen G, Gong L, Ge K, Pan W, Li N, Machuki JO, Yu Y, Geng D, Dong H, Gao F. DNAzyme-Powered Three-Dimensional DNA Walker Nanoprobe for Detection Amyloid β-Peptide Oligomer in Living Cells and in Vivo. Anal Chem 2020; 92:9247-9256. [PMID: 32536153 DOI: 10.1021/acs.analchem.0c01592] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid β-peptide oligomer (AβO) is widely acknowledged as the promising biomarker for the diagnosis of Alzheimer's disease (AD). In this work, we designed a three-dimensional (3D) DNA walker nanoprobe for AβO detection and real-time imaging in living cells and in vivo. The presence of AβO triggered the DNAzyme walking strand to cleave the fluorophore (TAMRA)-labeled substrate strand modified on the gold nanoparticle (AuNP) surface and release TAMRA-labeled DNA fragment, resulting in the recovery of fluorescent signal. The entire process was autonomous and continuous, without external fuel strands or protease, and finally produced plenty of TAMRA fluorescence, achieving signal amplification effect. The nanoprobe enabled the quantitative detection of AβO in vitro, and the limit of detection was 22.3 pM. Given the good biocompatibility of 3D DNA walker nanoprobe, we extended this enzyme-free signal amplification method to real-time imaging of AβO. Under the microscope, nanoprobe accurately located and visualized the distribution of AβO in living cells. Moreover, in vivo imaging results showed that our nanoprobe could be used to effectively distinguish the AD mice from the wild-type mice. This nanoprobe with the advantages of great sensitivity, high specificity, and convenience, provides an outstanding prospect for AD's early diagnosis development.
Collapse
Affiliation(s)
- Yiming Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Guofang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ling Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| |
Collapse
|
7
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
8
|
Wang C, Tan R, Li L, Liu D. Dual-modal Colorimetric and Fluorometric Method for Glucose Detection Using MnO2 Sheets and Carbon Quantum Dots. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9130-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Wang C, Li J, Tan R, Wang Q, Zhang Z. Colorimetric method for glucose detection with enhanced signal intensity using ZnFe 2O 4-carbon nanotube-glucose oxidase composite material. Analyst 2019; 144:1831-1839. [PMID: 30676591 DOI: 10.1039/c8an02330a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, a composite material comprised of ZnFe2O4 nanomaterial, carbon nanotubes (CNT) and glucose oxidase (GOD) was synthesized and used for glucose detection. ZnFe2O4-CNT was formed by a one-step solvothermal approach using acid-treated CNT as precursor, then GOD was linked to it by coupling reaction between -NH2 and -COOH. After addition of glucose, which is oxidized by GOD, the intermediate product (H2O2) further oxidizes the 3,3',5,5'-tetramethylbenzidine (TMB) substrate and forms a blue product. This process was accelerated in the presence of peroxidase-mimic ZnFe2O4 nanomaterial and the detected signal intensity was correspondingly enhanced. The linear detection range of glucose was 0.8 to 250 μM, with a limit of detection of 0.58 μM. This may originate from (1) the limited diffusion of intermediate species, which resulted in enhanced local concentrations of reaction compounds; (2) enhanced electron transmission among CNT, GOD and ZnFe2O4; (3) the synergistic enhancement of catalytic activity of ZnFe2O4 compared with other metal oxides; (4) the high loading capacity of ZnFe2O4-CNT for GOD molecules, because of its high surface-to-volume ratio. Meanwhile, this method has reasonable selectivity, stability and reusability and can be used for real serum detection, which may be useful for the development of sensitive biosensors.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Wang C, Tan R, Wang Q. One-step synthesized flower-like materials used for sensitively detecting amyloid precursor protein. Anal Bioanal Chem 2018; 410:6901-6909. [DOI: 10.1007/s00216-018-1293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 11/29/2022]
|
11
|
Tang M, Pi J, Long Y, Huang N, Cheng Y, Zheng H. Quantum dots-based sandwich immunoassay for sensitive detection of Alzheimer's disease-related Aβ 1-42. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:82-87. [PMID: 29734108 DOI: 10.1016/j.saa.2018.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/12/2018] [Accepted: 04/29/2018] [Indexed: 05/24/2023]
Abstract
Amyloid-beta peptide 1-42 (Aβ1-42) is known as a component of amyloid plaques in association with Alzheimer's disease. Herein, we developed a reliable and remarkably sensitive sandwich immunoassay to detect the Aβ1-42 using quantum dots (QDs) as fluorescent label. In the presence of Aβ1-42, the biotinylated Anti-beta Amyloid 1-16 (N-Ab) recognized the target and formed C-Ab-Aβ1-42-N-Ab sandwich immunocomplexes. Then Streptavidin-QDs conjugated to biotinylated N-Ab and the concentration of Aβ1-42 was determined by detecting the fluorescence intensity in the supernatant. This method is faster and more efficient than the previous approach we reported. It also has reasonable sensitivity and selectivity. Under the optimized conditions, the linear range is 5.0 to 100 pM (0.023-0.45 ng/mL) and the detection limit is 1.7 pM (7.6 pg/ mL). In addition, this method has been successfully applied to detect the Aβ1-42 in human cerebrospinal fluid sample.
Collapse
Affiliation(s)
- Menghuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiangli Pi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Wang C, Chen D, Wang Q, Wang Q. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. ANAL SCI 2018; 32:757-62. [PMID: 27396657 DOI: 10.2116/analsci.32.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, an aptasensor-based resonance light-scattering (RLS) method was developed for the sensitive and selective detection of acetamiprid. The ABA (acetamiprid binding aptamer)-stabilized gold nanoparticles (ABA-AuNPs) were used as a probe. Highly specific single-strand DNA (ssDNA, i.e, aptamers) that bind to acetamiprid with high affinity were employed to discriminate other pesticides, such as edifenphos, kanamycin, metribuzin et. al. The sensing approach is based on a specific interaction between acetamiprid and ABA. Aggregation of AuNPs was specifically induced by the desorption of the ABA from the surface of AuNPs, which caused the RLS signal intensity to be enhanced at 700 nm. The alteration of AuNPs' aggregation has been successfully optimized by controlling several conditions. Under the optimal conditions, the RLS intensity changes (I/I0) of AuNPs were linearly correlated with the acetamiprid concentration in the range of 0 - 100 nM. The detection limit is 1.2 nM (3σ). This method had also been used for acetamiprid detection in lake water samples.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University
| | | | | | | |
Collapse
|
13
|
|
14
|
Li M, Zhao A, Ren J, Qu X. N-Methyl Mesoporphyrin IX as an Effective Probe for Monitoring Alzheimer's Disease β-Amyloid Aggregation in Living Cells. ACS Chem Neurosci 2017; 8:1299-1304. [PMID: 28281745 DOI: 10.1021/acschemneuro.6b00436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Formation of amyloid fibrils by amyloid-β peptide (Aβ) is an important step in Alzheimer's disease (AD) progression. Screening and designing of new molecules which can monitor the amyloidosis process especially in cells are diagnostically and therapeutically important. Utilizing Thioflavin T (ThT), the commonly used amyloid dye, is the most standardized way to monitor amyloid. However, with the green fluorescence emission and small Stokes shift, the fluorescence of ThT can overlap with that arising from other intrinsic fluorescent components in the cells, making it not suitable for detection of protein aggregates in vivo. Therefore, it is urgent for developing amyloid probes with large Stokes shifts and red-shifted fluorescence emission to detect Aβ aggregates in cells. In this report, we found that N-methyl mesoporphyrin IX (NMM), a widely used G-quadruplex DNA specific fluorescent binder, can be an efficient probe for monitoring Aβ fibrillation in living cells. NMM is nonfluorescent in aqueous solution or monomeric Aβ environments. However, through stacking with the Aβ assemblies, NMM emits strong fluorescence. Furthermore, the large Stokes shift and stable photoluminescence make it an ideal probe for detecting Aβ aggregates in highly fluorescent environments and cell culture. Our results provide a new sight to design and screen new reagents for monitoring the diseases associated with protein conformational disorders.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical
Biology and State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Andong Zhao
- Laboratory of Chemical
Biology and State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinsong Ren
- Laboratory of Chemical
Biology and State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical
Biology and State Key Laboratory of Rare Earth Resource Utilization,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
15
|
Wang C, Chen D, Wang Q, Tan R. Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles. Biosens Bioelectron 2017; 91:262-267. [DOI: 10.1016/j.bios.2016.12.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
|
16
|
Xing Y, Feng XZ, Zhang L, Hou J, Han GC, Chen Z. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int J Nanomedicine 2017; 12:3171-3179. [PMID: 28458538 PMCID: PMC5402878 DOI: 10.2147/ijn.s132776] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble beta-amyloid (Aβ) oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD) patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP) aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF) samples was demonstrated.
Collapse
Affiliation(s)
- Yun Xing
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Lipeng Zhang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Jiating Hou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
17
|
Hou Y, Liu J, Hong M, Li X, Ma Y, Yue Q, Li CZ. A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique. Biosens Bioelectron 2017; 92:259-265. [PMID: 28231553 DOI: 10.1016/j.bios.2017.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/28/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
The design of molecular nanodevices attracted great interest in these years. Herein, a reusable, sensitive and specific aptasensor was constructed based on an extension-contraction movement of DNA interconversion for the application of human thrombin detection. The present biosensor was based on resonance light scattering (RLS) using magnetic nanoparticles (MNPs) as the RLS probe. MNPs coated with streptavidin can combine with biotin labeled thrombin aptamers. The combined nanoparticles composite is monodispersed in aqueous medium. When thrombin was added a sandwich structure can form on the surface of MNPs, which induced MNPs aggregation. RLS signal was therefore enhanced, and there is a linear relationship between RLS increment and thrombin concentration in the range of 60pM-6.0nM with a limit of detection at 3.5pM (3.29SB/m, according to the recent recommendation of IUPAC). The present aptasensor can be repeatedly used for at least 6 cycling times by heat to transfer G-quadruplex conformation to single strand of DNA sequence and release thrombin. MNPs can be captured by applying the external magnetic field. Furthermore, the proposed biosensor was successfully applied to detect thrombin in human plasma.
Collapse
Affiliation(s)
- Yining Hou
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Jifeng Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Hong
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Yanhua Ma
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.
| |
Collapse
|
18
|
Wang C, Wang C, Wang Q, Chen D. Resonance light scattering method for detecting kanamycin in milk with enhanced sensitivity. Anal Bioanal Chem 2017; 409:2839-2846. [DOI: 10.1007/s00216-017-0228-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/25/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
|
19
|
Ren B, Zhang M, Hu R, Chen H, Wang M, Lin Y, Sun Y, Jia L, Liang G, Zheng J. Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine Hydrochloride as an Amyloid-β Aggregation Inhibitor. ACS OMEGA 2017; 2:243-250. [PMID: 30023514 PMCID: PMC6044715 DOI: 10.1021/acsomega.6b00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/13/2017] [Indexed: 05/29/2023]
Abstract
Cardiovascular disease (CVD) and Alzheimer's disease (AD) have a mutual cause-and-effect relationship, and they share some common risk factors. Although numerous Food and Drug Administration (FDA)-approved drugs have been developed for CVD treatment, no drugs are clinically available for AD treatment. Given the common disease-causing factors and links between the two diseases and the well-demonstrated drugs for CVD, we propose to re-examine the new potential of the existing CVD drugs as amyloid-β (Aβ) inhibitors. 3-Morpholinosydnonimine hydrochloride (SIN-1) is an FDA-approved drug for inhibiting platelet aggregation in CVD. Herein, we examine the inhibition activity of SIN-1 on the aggregation and toxicity of Aβ1-42 using combined experimental and computational approaches. Collective experimental data from ThT, circular dichroism, and atomic force microscopy demonstrate that SIN-1 can effectively inhibit amyloid formation at every stage of Aβ aggregation by prolonging lag phase, slowing down aggregation rate, and reducing final fibril formation. The cell viability assay also shows that SIN-1 enables the protection of SH-SY5Y cells from Aβ-induced cell toxicity. Such an inhibition effect is attributed to interference with the structural transition of Aβ toward a β-sheet structure by SIN-1. Furthermore, molecular dynamic simulations confirm that SIN-1 preferentially binds to the C-terminal β-sheet grooves of an Aβ oligomer and consequently disrupts the β-sheet structure of Aβ and Aβ-Aβ association, explaining experimental observations. This work discovers a new function of SIN-1, making it a promising compound with dual protective roles in inhibiting both platelet and Aβ aggregations against CVD and AD.
Collapse
Affiliation(s)
- Baiping Ren
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- School
of Life Science and Biotechnology, Dalian
University of Technology, Dalian 116024, China
| | - Mingzhen Zhang
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hong Chen
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Manli Wang
- Mingyuan
Staff-Worker Hospital of Xinjiang Oil Field Company, 789 Youhao Beilu, Urumqi, Xinjiang 830000, China
| | - Yufeng Lin
- Mingyuan
Staff-Worker Hospital of Xinjiang Oil Field Company, 789 Youhao Beilu, Urumqi, Xinjiang 830000, China
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lingyun Jia
- School
of Life Science and Biotechnology, Dalian
University of Technology, Dalian 116024, China
| | - Guizhao Liang
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jie Zheng
- Department
of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
20
|
Kim HY, Lee D, Ryu KY, Choi I. A gold nanoparticle-mediated rapid in vitro assay of anti-aggregation reagents for amyloid β and its validation. Chem Commun (Camb) 2017; 53:4449-4452. [DOI: 10.1039/c7cc00358g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rapidin vitrocolorimetric method for screening anti-aggregation reagents of amyloid β is reported by using gold nanoparticles.
Collapse
Affiliation(s)
- Hye Young Kim
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Donghee Lee
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Kwon-Yul Ryu
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Inhee Choi
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| |
Collapse
|
21
|
Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 2016; 85:625-632. [DOI: 10.1016/j.bios.2016.05.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
|
22
|
Yang Q, Liu J, Li B, Hu X, Liu S, Chen G. In-situ formation of ion-association nanoparticles induced enhancements of resonance Rayleigh scattering intensities for quantitative analysis of trace Hg(2+) ions in environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:19-25. [PMID: 27235829 DOI: 10.1016/j.saa.2016.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
In this paper, Hg(2+) ions are demonstrated to form anionic [HgI4](2-) complexes after interacting with massive amount of I(-) ions. Subsequently, the addition of tetradecyl pyridyl bromide (TPB) can make [HgI4](2-) anionic complexes react with univalent tetradecyl pyridyl cationic ions (TP(+)), forming dispersed ion-association complexes (TP)2(HgI4). Due to the extrusion action of water and Van der Waals force, the hydrophobic ion-association complexes aggregate together, forming dispersed nanoparticles with an average size of about 8.5nm. Meanwhile, resonance Rayleigh scattering (RRS) intensity is apparently enhanced due to the formation of (TP)2(HgI4) ion-association nanoparticles, contributing to a novel technique for Hg(2+) detection. The wavelength of 365nm is chosen as a detection wavelength and several conditions affecting the RRS responses of Hg(2+) are optimized. Under the optimum condition, the developed method is used for the determination of Hg(2+) in aqueous solution and the detection limit is estimated to be 0.8ngmL(-1). Finally, the practical application of the developed method can be confirmed through the detections of Hg(2+) in waste and river water samples with satisfactory results.
Collapse
Affiliation(s)
- Qingling Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Environmental Monitoring Center in Chongqing City, Chongqing 400020, China
| | - Jian Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Banglin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Gangcai Chen
- Environmental Monitoring Center in Chongqing City, Chongqing 400020, China
| |
Collapse
|
23
|
Zhou Y, Liu L, Hao Y, Xu M. Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer's Disease. Chem Asian J 2016; 11:805-17. [DOI: 10.1002/asia.201501355] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Lantao Liu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Yuanqiang Hao
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| |
Collapse
|
24
|
Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg(2+) Using Hg(2+)-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification. Anal Chem 2016; 88:1385-90. [PMID: 26704253 DOI: 10.1021/acs.analchem.5b03972] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel signal-on and label-free resonance Rayleigh scattering (RRS) aptasensor was constructed for detection of Hg(2+) based on Hg(2+)-triggered Exonuclease III-assisted target recycling and growth of G-quadruplex nanowires (G-wires) for signal amplification. The hairpin DNA (H-DNA) was wisely designed with thymine-rich recognition termini and a G-quadruplex sequence in the loop and employed as a signal probe for specially recognizing trace Hg(2+) by a stable T-Hg(2+)-T structure, which automatically triggered Exonuclease III (Exo-III) digestion to recycle Hg(2+) and liberate the G-quadruplex sequence. The free G-quadruplex sequences were self-assembled into guanine nanowire (G-wire) superstructure in the presence of Mg(2+) and demonstrated by gel electrophoresis. The RRS intensity was dramatically amplified by the resultant G-wires, and the maximum RRS signal at 370 nm was linear with the logarithm of Hg(2+) concentration in the range of 50.0 pM to 500.0 nM (R = 0.9957). Selectivity experiments revealed that the as-prepared RRS sensor was specific for Hg(2+), even coexisting with high concentrations of other metal ions. This optical aptasensor was successfully applied to identify Hg(2+) in laboratory tap water and river water samples. With excellent sensitivity and selectivity, the proposed RRS aptasensor was potentially suitable for not only routine detection of Hg(2+) in environmental monitoring but also various target detection just by changing the recognition sequence of the H-DNA probe.
Collapse
Affiliation(s)
- Wang Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Hong Guo Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Zhong Feng Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
25
|
Pi J, Long Y, Huang N, Cheng Y, Zheng H. A sandwich immunoassay for detection of Aβ1-42 based on quantum dots. Talanta 2016; 146:10-5. [DOI: 10.1016/j.talanta.2015.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
26
|
Ma L, Lei Z, Liu X, Liu D, Wang Z. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform. Analyst 2016; 141:3084-9. [DOI: 10.1039/c6an00488a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A surface ligation-based RLS method is developed on a microarray platform for a sensitive and specific assay of methylated genomic DNA.
Collapse
Affiliation(s)
- Lan Ma
- Analysis and Testing Center
- Ningxia University
- Yinchuan
- P. R. China
- State Key Laboratory of Electroanalytical Chemistry
| | - Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xia Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
27
|
Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40) using amyloid-β fibrillization promoting peptide. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Wang C, Wang Z. Studying the relationship between cell cycle and Alzheimer's disease by gold nanoparticle probes. Anal Biochem 2015; 489:32-7. [PMID: 26299647 DOI: 10.1016/j.ab.2015.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
In this study, a simple gold nanoparticle (GNP)-based colorimetric assay has been developed for studying the relationship between cell cycle and β-amyloid peptide (Aβ, the biomarker of Alzheimer's disease [AD]) expression level. It was found that Aβ expression of neuronal cells (e.g., SHG-44 cell line) is strongly dependent on cell cycle phases; that is, the Aβ expression level was highest when cells were arrested in the G1/S phase by thymidine and was lowest when they were arrested in the G2/M phase by nocodazole. This finding may improve the understanding of AD pathology and provide a new tool for anti-dementia drug development.
Collapse
Affiliation(s)
- Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
29
|
Zhou Y, Dong H, Liu L, Xu M. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2144-9. [PMID: 25641831 DOI: 10.1002/smll.201402593] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Indexed: 05/20/2023]
Abstract
A simple method for specific colorimetric sensing of Alzheimer's disease related amyloid-β peptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | | | | | | |
Collapse
|
30
|
Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method. Biosens Bioelectron 2015; 65:360-5. [DOI: 10.1016/j.bios.2014.10.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
|
31
|
Han Y, Li P, Xu Y, Li H, Song Z, Nie Z, Chen Z, Yao S. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:877-885. [PMID: 25277402 DOI: 10.1002/smll.201401989] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Protein acetylation catalyzed by histone acetyltransferases (HATs) is significant in biochemistry and pharmacology because of its crucial role in epigenetic gene regulations. Herein, an antibody-free fluorescent nanosensor is developed for the facile detection of HAT activity based on acetylation protection against exopeptidase cleavage and super-quenching ability of nanomaterials. It is shown for the first time that HAT-catalyzed acetylation could protect the peptide against exopeptidase digestion. FITC-tagged acetylated peptide causes the formation of a nano-quenchers/peptide nano-complex resulting in fluorescence quenching, while the unacetylated peptide is fully degraded by exopeptidase to release the fluorophore and restore fluorescence. Four kinds of nano-quenchers, including core-shell magnetic graphitic nanocapsules (MGN), graphene oxide (GO), single-walled carbon nanotubes (SWCNTs), and gold nanoparticles (AuNPs), are comprehensively compared. MGN shows the best selectivity to recognize the acetylated peptide and the lowest detection limit because of its excellent quenching efficiency and magnetic enrichment property. With this MGN-based nanosensor, HAT p300 is detected down to 0.1 nM with wide linear range from 0.5 to 100 nM. This sensor is feasible to assess HAT inhibition and detect p300 activity in cell lysate. The proposed nanosensor is simple, sensitive, and cost-effective for HAT assay, presenting a promising toolkit for epigenetic research and HAT-targeted drug discovery.
Collapse
Affiliation(s)
- Yitao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang C, Wang K, Wang Z. Development of gold nanoparticle based colorimetric method for quantitatively studying the inhibitors of Cu2+/Zn2+ induced β-amyloid peptide assembly. Anal Chim Acta 2015; 858:42-8. [DOI: 10.1016/j.aca.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 11/24/2022]
|
33
|
Bi S, Wang T, Wang Y, Zhao T, Zhou H. Using gold nanoparticles as probe for detection of salmeterol xinafoate by resonance Rayleigh light scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1074-1079. [PMID: 25173524 DOI: 10.1016/j.saa.2014.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
The paper explores the method of determination of salmeterol xinafoate at nanogram level with gold nanoparticles (AuNPs) probe, to measure the intensity of resonance Rayleigh light scattering (RLS) by a common spectrofluorometer. The RLS intensity of salmeterol xinafoate was greatly enhanced by AuNPs, with the maximum scattering peak at 357 nm. The salmeterol xinafoate was determined basing on the binding of salmeterol xinafoate to AuNPs by electrostatic adsorption. Under the optimum conditions, the enhanced RLS intensity was directly proportional to the concentration of salmeterol xinafoate in the range of 0.054-6.038 μg mL(-1) with a good linear relationship (r=0.9928). The limit of detection (LOD) was 9.48 ng mL(-1). The interference tests were performed carefully. With the proposed method, the synthetic samples were analyzed satisfactorily, the recovery and RSD were 102.5-103.0% and 0.67-1.0% respectively.
Collapse
Affiliation(s)
- Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China.
| | - Tianjiao Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Yu Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Tingting Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Huifeng Zhou
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| |
Collapse
|
34
|
Xing Y, Xia N. Biosensors for the Determination of Amyloid-Beta Peptides and their Aggregates with Application to Alzheimer's Disease. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.968925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Yu YY, Zhang L, Sun XY, Li CL, Qiu Y, Sun HP, Tang DQ, Liu YW, Yin XX. A sensitive colorimetric strategy for monitoring cerebral β-amyloid peptides in AD based on dual-functionalized gold nanoplasmonic particles. Chem Commun (Camb) 2015; 51:8880-3. [DOI: 10.1039/c5cc01855b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A sensitive colorimetric probe based on GNPs was designed and applied to Aβ determination.
Collapse
Affiliation(s)
- Yan-yan Yu
- Department of Pharmaceutical Analysis
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Lin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Xiao-yu Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Cheng-lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Yu Qiu
- Department of Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Hao-peng Sun
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Dao-quan Tang
- Department of Pharmaceutical Analysis
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Yao-wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| | - Xiao-xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou 221004
- P. R. China
| |
Collapse
|
36
|
Feng DQ, Liu G, Wang W. A novel biosensor for copper(ii) ions based on turn-on resonance light scattering of ssDNA templated silver nanoclusters. J Mater Chem B 2015; 3:2083-2088. [DOI: 10.1039/c4tb01940g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ultrasensitive biosensor for copper(ii) ions was first developed based on turn-on resonance light scattering (RLS) of ssDNA templated silver nanoclusters through anti-galvanic reduction (AGR).
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| | - Guoliang Liu
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| | - Wei Wang
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| |
Collapse
|
37
|
A highly sensitive resonance light scattering probe for Alzheimer׳s amyloid-β peptide based on Fe3O4@Au composites. Talanta 2015; 131:475-9. [DOI: 10.1016/j.talanta.2014.07.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023]
|
38
|
Peng J, Weng J, Ren L, Sun L. Interactions between gold nanoparticles and amyloid
β
25–35
peptide. IET Nanobiotechnol 2014; 8:295-303. [DOI: 10.1049/iet-nbt.2013.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jian Peng
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Jian Weng
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Lei Ren
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Li‐Ping Sun
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| |
Collapse
|
39
|
Xia N, Liu L, Wu R, Liu H, Li SJ, Hao Y. Ascorbic acid-triggered electrochemical–chemical–chemical redox cycling for design of enzyme-amplified electrochemical biosensors on self-assembled monolayer-covered gold electrodes. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta 2014; 125:341-6. [DOI: 10.1016/j.talanta.2014.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/18/2022]
|
41
|
Liu X, Yu X, Luo X. Ultrasensitive iodide detection based on the resonance light scattering of histidine-stabilized gold nanoclusters. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1268-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Competitive electrochemical immunoassay for detection of β-amyloid (1–42) and total β-amyloid peptides using p-aminophenol redox cycling. Biosens Bioelectron 2014; 51:208-12. [DOI: 10.1016/j.bios.2013.07.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022]
|
43
|
Yue Q, Shen T, Wang J, Wang L, Xu S, Li H, Liu J. A reusable biosensor for detecting mercury(II) at the subpicomolar level based on "turn-on" resonance light scattering. Chem Commun (Camb) 2013; 49:1750-2. [PMID: 23344458 DOI: 10.1039/c3cc38488h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable sensing strategy employing magnetic nanoparticles and thymine-containing aptamers was developed to detect Hg(2+) in real water samples based on "turn-on" resonance light scattering. The LOD was as low as 500 fM (S/N = 3), and the present sensor can be repeatedly used for at least seven cycles.
Collapse
Affiliation(s)
- Qiaoli Yue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Choi I, Lee LP. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS NANO 2013; 7:6268-6277. [PMID: 23777418 DOI: 10.1021/nn402310c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the primary pathological hallmarks of Alzheimer's diseases (AD) is amyloid-β (Aβ) aggregation and its extracellular accumulation. However, current in vitro Aβ aggregation assays require time-consuming and labor-intensive steps, which delay the process of drug discovery and understanding the mechanism of Aβ induced neurotoxicity. Here, we propose a rapid detection method for studying Aβ aggregation and inhibition under an optimized acidic perturbation condition by dual functions of gold nanoplasmonic particles (GNPs): (1) catalytic activator and (2) optical reporter. Because of roles of GNPs as effective nucleation sites for fast-catalyzing Aβ aggregation and colorimetric optical reporters for tracking Aβ aggregation, we accomplished the fast aggregation assay in less than 1 min by the naked eyes. Our detection method is based on spontaneous clustering of unconjugated (unmodified) GNPs along with the aggregated Aβ network under an aggregation-promoting condition. As a proof-of-concept demonstration, we employed the acidic perturbation permitting rapid cooperative assemblies of GNPs and Aβ peptides via their surface charge modulation. Under the optimized acidic perturbation condition around pH 2 to 3, we characterized the concentration-dependent colorimetric responses for aggregation at physiologically relevant Aβ concentration levels (from 100 μM to 10 nM). We also demonstrated the GNP/acidic condition-based rapid inhibition assay of Aβ aggregation by using well-known binding reagents such as antibody and serum albumin. The proposed methodology can be a powerful alternative method for screening drugs for AD as well as studying molecular biophysics of protein aggregations, and further extended to explore other protein conformational diseases such as neurodegenerative disease.
Collapse
Affiliation(s)
- Inhee Choi
- Berkeley Sensor and Actuator Center, Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
45
|
Bi S, Wang Y, Wang T, Pang B, Zhao T. The analytical application and spectral investigation of DNA-CPB-emodin and sensitive determination of DNA by resonance Rayleigh light scattering technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 101:233-238. [PMID: 23103464 DOI: 10.1016/j.saa.2012.09.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
A new sensitive DNA probe containing cetylpyridinium bromide (CPB) and emodin (an effective component of Chinese herbal medicine) was developed using the resonance Rayleigh light scattering (RLS) technique. A novel assay was first developed to detect DNA at nanogram level based on the ternary system of DNA-CPB-emodin. The RLS signal of DNA was enhanced remarkably in the presence of emodin-CPB, and the enhanced RLS intensity at 340.0 nm was in direct proportion to DNA concentration in the range of 0.01-2.72 μg mL(-1) with a good linear relationship. The detection limit was 1.5 ng mL(-1). Three synthetic DNA samples were measured obtaining satisfactory results, the recovery was 97.6-107.3%.
Collapse
Affiliation(s)
- Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China.
| | | | | | | | | |
Collapse
|
46
|
Lin C, Wen G, Liang A, Jiang Z. A new resonance Rayleigh scattering method for the determination of trace O3 in air using rhodamine 6G as probe. RSC Adv 2013. [DOI: 10.1039/c3ra00020f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
|
48
|
Zhang P, He J, Ma X, Gong J, Nie Z. Ultrasound assisted interfacial synthesis of gold nanocones. Chem Commun (Camb) 2012; 49:987-9. [PMID: 23254344 DOI: 10.1039/c2cc37713f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes a facile method for the synthesis of conical-shaped Au nanoparticles with a hollow cavity by combining interfacial reaction and ultrasonic cavitation. The Au nanocones showed an enhancement factor of 7.7 × 10(8) in surface enhanced Raman scattering (SERS) detection.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
49
|
Zhang Y, Liu JM, Yan XP. Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem 2012. [PMID: 23194289 DOI: 10.1021/ac3025653] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Folate receptor (FR) can be overexpressed by a number of epithelial-derived tumors, but minimally expressed in normal tissues. As folic acid (FA) is a high-affinity ligand to FR, and not produced endogenously, development of FA-conjugated probes for targeted imaging FR overexpressed cancer cells is of significance for assessing cancer therapeutics and for better understanding the expression profile of FR in cancer. Here we report a novel turn-on fluorescence probe for imaging FR overexpressed cancer cells. The probe was easily fabricated via electrostatic self-assembly of FA and polyethyleneimine-coated CdS/ZnS quantum dots (PEI-CdS/ZnS QDs). The primary fluorescence of PEI-CdS/ZnS QDs turned off first upon the electrostatic adsorption of FA onto PEI-CdS/ZnS QDs based on electron transfer to produce negligible fluorescence background. The presence of FR expressed on the surface of cancer cells then made FA desorb from PEI-CdS/ZnS QDs due to specific and high affinity of FA to FR. As a result, the primary fluorescence of PEI-CdS/ZnS QDs adhering to the cells turned on due to the inhibition of electron transfer. The most important merits of the developed probe are its simplicity and the effective avoidance of the false positive results due to the simple electrostatic self-assembly of FA onto the surface of PEI-CdS/ZnS QDs and the involved fluorescence "off-on" mechanism. The probe was demonstrated to be sensitive and selective for targeted imaging of FR overexpressed cancer cells in turn-on mode.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | | | | |
Collapse
|
50
|
Wang C, Liu D, Wang Z. Gold nanoparticle based dot-blot immunoassay for sensitively detecting Alzheimer's disease related β-amyloid peptide. Chem Commun (Camb) 2012; 48:8392-4. [DOI: 10.1039/c2cc33568a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|