1
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme fragment complementation driven by nucleic acid hybridization sans self-labeling protein. Bioorg Chem 2025; 154:108039. [PMID: 39705932 DOI: 10.1016/j.bioorg.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
A modified enzyme fragment complementation assay has been designed and validated as a turn-on biosensor for nucleic acid detection in dilute aqueous solution. The assay is target sequence-agonistic and uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified enzymatically at their C-termini to steramers, sterol-linked oligonucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, serves as the self-cleaving enzyme for the NanoBiT-steramer bioconjugations. Unlike current approaches, the final bioconjugate generated by DHhC and used for nucleic acid detection is free of self-labeling passenger protein. In the presence of single stranded (ss) DNA or RNA template with adjacent segments complementary to the Nano-BiT steramer oligonucleotides, the two NanoBiT fragments associate productively, reconstituting NanoBiT's luciferase activity. In samples containing ssDNA or RNA template at low nM concentrations, NanoBiT luminescence exceeded background signal by 30- to 60-fold. The steramer probe sequences used to prepare these sensors are unconstrained in length and composition. In the absence of sequence constraints of the probe element and without the added bulk of a self-labeling protein, these NanoBiT-steramer bioconjugates open new applications in the programmable detection of small fragments of coding and noncoding DNA and RNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA.
| |
Collapse
|
2
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme Fragment Complementation Driven by Nucleic Acid Hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572427. [PMID: 38187717 PMCID: PMC10769296 DOI: 10.1101/2023.12.19.572427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
3
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid. Chembiochem 2022; 23:e202100594. [PMID: 34890095 PMCID: PMC8961972 DOI: 10.1002/cbic.202100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Indexed: 01/16/2023]
Abstract
Enzymatic beacons, or E-beacons, are 1 : 1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming ssDNA equipped with a dark quencher. We prepared E-beacons biocatalytically using HhC, the promiscuous Hedgehog C-terminal protein-cholesterol ligase. HhC attached nanoluciferase site-specifically to mono-sterylated hairpin oligonucleotides, called steramers. Three E-beacon dark quenchers were evaluated: Iowa Black, Onyx-A, and dabcyl. Each quencher enabled sensitive, sequence-specific nucleic acid detection through enhanced E-beacon bioluminescence upon target hybridization. We assembled prototype dabcyl-quenched E-beacons specific for SARS-CoV-2. Targeting the E484 codon of the virus Spike protein, E-beacons (80×10-12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1×10-9 M by increased bioluminescence of 8-fold. E-beacon prepared for the SARS-CoV-2 E484K variant functioned with similar sensitivity. Both E-beacons could discriminate their target from the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with mismatch specificity, E-beacons are two to three orders of magnitude more sensitive than synthetic molecular beacons.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
4
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid and Potential Utility for SARS-CoV-2 Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.30.458287. [PMID: 34494022 PMCID: PMC8423218 DOI: 10.1101/2021.08.30.458287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymatic beacons, or E-beacons, are 1:1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming DNA oligonucleotides equipped with a dark quencher. We prepared E-beacons biocatalytically using the promiscuous "hedgehog" protein-cholesterol ligase, HhC. Instead of cholesterol, HhC attached nanoluciferase site-specifically to mono-sterylated hairpin DNA, prepared in high yield by solid phase synthesis. We tested three potential E-beacon dark quenchers: Iowa Black, Onyx-A, and dabcyl. Prototype E-beacon carrying each of those quenchers provided sequence-specific nucleic acid sensing through turn-on bioluminescence. For practical application, we prepared dabcyl-quenched E-beacons for potential use in detecting the COVID-19 virus, SARS-CoV-2. Targeting the E484 codon of the SARS-CoV-2 Spike protein, E-beacons (80 × 10 -12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1 × 10 -9 M with increased bioluminescence of 8-fold. E-beacon prepared for the E484K variant of SARS-CoV-2 functioned with similar sensitivity. These E-beacons could discriminate their complementary target from nucleic acid encoding the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with specificity, detection sensitivity with E-beacons is two to three orders of magnitude better than synthetic molecular beacons, rivaling the most sensitive nucleic acid detection agents reported to date.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
5
|
Zhou L, Zhang L, Yang L, Ni W, Li Y, Wu Y. Tandem reassembly of split luciferase-DNA chimeras for bioluminescent detection of attomolar circulating microRNAs using a smartphone. Biosens Bioelectron 2021; 173:112824. [PMID: 33229132 DOI: 10.1016/j.bios.2020.112824] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/03/2023]
Abstract
Detection of dysregulated circulating microRNAs (miRNAs) in human biofluids is a fundamental ability to determine tumor occurrence and metastasis in a minimally invasive fashion. However, the requirements for sophisticated instruments and professional personnel impede the translation of miRNA tests into routine clinical diagnostics, especially for resource-limited regions. Herein, we developed a DNA-guided bioluminescence strategy for the detection of circulating miRNAs. In this strategy, a pair of split luciferase-DNA chimeras was constructed and integrated into the miRNA-triggered rolling circle amplification (RCA) process. The tandem reassembly of split luciferase-DNA chimeras on the RCA products elicited a turn-on bioluminescence response with ultrahigh signal-to-background (S/B) ratio. This strategy enabled smartphone-based assays for different miRNAs with attomolar sensitivity and single-base specificity, as demonstrated here for miR-21. miR-148b, and cel-miR-39. Further application of our approach to the clinical serum samples realized identification of dysregulated miR-21 and miR-148b in the lung cancer patients, showing a satisfactory agreement with the control assays performed with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Therefore, the developed method possesses the benefits of high performance and reliability, offering a potential tool for implementing miRNA-based diagnosis in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Lanlan Zhou
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Linling Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Liu Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, PR China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, PR China.
| | - Yong Li
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Yunhua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Moutsiopoulou A, Broyles D, Joda H, Dikici E, Kaur A, Kaifer A, Daunert S, Deo SK. Bioluminescent Protein-Inhibitor Pair in the Design of a Molecular Aptamer Beacon Biosensing System. Anal Chem 2020; 92:7393-7398. [PMID: 32410446 PMCID: PMC7955708 DOI: 10.1021/acs.analchem.0c00518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although bioluminescent molecular beacons designed around resonance quenchers have shown higher signal-to-noise ratios and increased sensitivity compared with fluorescent beacon systems, bioluminescence quenching is still comparatively inefficient. A more elegant solution to inefficient quenching can be realized by designing a competitive inhibitor that is structurally very similar to the native substrate, resulting in essentially complete substrate exclusion. In this work, we designed a conjugated anti-interferon-γ (IFN-γ) molecular aptamer beacon (MAB) attached to a bioluminescent protein, Gaussia luciferase (GLuc), and an inhibitor molecule with a similar structure to the native substrate coelenterazine. To prove that a MAB can be more sensitive and have a better signal-to-noise ratio, a bioluminescence-based assay was developed against IFN-γ and provided an optimized, physiologically relevant detection limit of 1.0 nM. We believe that this inhibitor approach may provide a simple alternative strategy to standard resonance quenching in the development of high-performance molecular beacon-based biosensing systems.
Collapse
Affiliation(s)
- Angeliki Moutsiopoulou
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
- University of Miami, Department of Chemistry, Coral Gables, Florida 33146, United States
| | - David Broyles
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
| | - Hamdi Joda
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
| | - Emre Dikici
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
| | - Avinash Kaur
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
| | - Angel Kaifer
- University of Miami, Department of Chemistry, Coral Gables, Florida 33146, United States
| | - Sylvia Daunert
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States
- University of Miami Clinical and Translational Science Institute, Miami, Florida 33136, United States
| | - Sapna K Deo
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, Florida 33136, United States
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
7
|
Li Y, Zhou L, Ni W, Luo Q, Zhu C, Wu Y. Portable and Field-Ready Detection of Circulating MicroRNAs with Paper-Based Bioluminescent Sensing and Isothermal Amplification. Anal Chem 2019; 91:14838-14841. [PMID: 31693337 DOI: 10.1021/acs.analchem.9b04422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a paper-based system that integrates bioluminescence resonance energy transfer (BRET) and isothermal amplification for the analysis of tumor-associated circulating microRNAs (miRNAs) in clinical serum samples. The analysis procedure could be easily accomplished with two pieces of functionalized paper and a low-cost smartphone-based device, which enables sequence-specific quantification of femtomolar miRNAs, without the need for tedious handling of aqueous reactions and operation of sophisticated equipment. Furthermore, the analytical performance of the proposed paper-based system was highly stable at room temperature, demonstrating its capability for cold-chain-free and remote deployment. These qualities highlight the practical utility of our method for the portable and field-ready miRNA diagnostic tests in resource-limited settings.
Collapse
Affiliation(s)
| | | | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine , Hubei Province Academy of Traditional Chinese Medicine , Wuhan 430061 , P. R. China
| | - Qingying Luo
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | | | | |
Collapse
|
8
|
Moutsiopoulou A, Broyles D, Dikici E, Daunert S, Deo SK. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902248. [PMID: 31313884 PMCID: PMC6715520 DOI: 10.1002/smll.201902248] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Indexed: 05/07/2023]
Abstract
The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor-quencher pairs such as fluorescent dyes, quantum dots, carbon-based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor-acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.
Collapse
Affiliation(s)
- Angeliki Moutsiopoulou
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- Department of Chemistry Coral Gables, University of Miami, FL, 33146, USA
| | - David Broyles
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- University of Miami Clinical and Translational Science Institute, Miami, FL, 33136, USA
| | - Sapna K Deo
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
9
|
Joda H, Moutsiopoulou A, Stone G, Daunert S, Deo S. Design of Gaussia luciferase-based bioluminescent stem-loop probe for sensitive detection of HIV-1 nucleic acids. Analyst 2018; 143:3374-3381. [PMID: 29897056 PMCID: PMC6489121 DOI: 10.1039/c8an00047f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Here we describe the design of a bioluminescent stem-loop probe for the sensitive detection of HIV-1 spliced RNA. In this study, we employed Gaussia luciferase (GLuc), a bioluminescent protein that has several advantages over other bioluminescent proteins, including smaller size, higher bioluminescent intensity, and chemical and thermal stability. GLuc was chemically conjugated to the DABCYL-modified stem-loop probe (SLP) and was purified with a 2-step process to remove unconjugated GLuc and SLP. The binding of the target RNA to the loop region of the SLP results in the open conformation separating the stem part of SLP. GLuc conjugated to the stem acts as a reporter that produces light by a chemical reaction upon adding its substrate, coelenterazine in the presence of the target, while DABCYL serves as a quencher of bioluminescence in the closed conformation of SLP in the absence of the target. The optimized GLuc based-SLP assay resulted in a signal-to-background ratio of 47, which is the highest reported with bioluminescent SLPs and is significantly higher compared to traditional fluorescence-based SLPs that yield low signal to background ratio. Moreover, the assay showed an excellent selectivity against a single and double mismatched nucleic acid target, low detection limit, and ability to detect spiked HIV-1 RNA in human serum matrix.
Collapse
Affiliation(s)
- Hamdi Joda
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA.
| | | | | | | | | |
Collapse
|
10
|
Engelen W, van de Wiel KM, Meijer LHH, Saha B, Merkx M. Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids. Chem Commun (Camb) 2018; 53:2862-2865. [PMID: 28217801 PMCID: PMC5436041 DOI: 10.1039/c6cc10032e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor.
Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM concentrations of nucleic acids directly in complex media.
Collapse
Affiliation(s)
- Wouter Engelen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven, University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Kayleigh M van de Wiel
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven, University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Lenny H H Meijer
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven, University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Bedabrata Saha
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven, University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven, University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Hunt EA, Moutsiopoulou A, Broyles D, Head T, Dikici E, Daunert S, Deo SK. Expression of a soluble truncated Vargula luciferase in Escherichia coli. Protein Expr Purif 2017; 132:68-74. [PMID: 28108349 DOI: 10.1016/j.pep.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/07/2023]
Abstract
Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties.
Collapse
Affiliation(s)
- Eric A Hunt
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA; University of Miami, Department of Chemistry, Coral Gables, 33146, USA
| | - Angeliki Moutsiopoulou
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA; University of Miami, Department of Chemistry, Coral Gables, 33146, USA
| | - David Broyles
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Trajen Head
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Emre Dikici
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Sylvia Daunert
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Sapna K Deo
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA.
| |
Collapse
|
12
|
Hunt EA, Moutsiopoulou A, Ioannou S, Ahern K, Woodward K, Dikici E, Daunert S, Deo SK. Truncated Variants of Gaussia Luciferase with Tyrosine Linker for Site-Specific Bioconjugate Applications. Sci Rep 2016; 6:26814. [PMID: 27271118 PMCID: PMC4897649 DOI: 10.1038/srep26814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Gaussia luciferase (Gluc)-with its many favorable traits such as small size, bright emission, and exceptional stability-has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed.
Collapse
Affiliation(s)
- Eric A. Hunt
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
- University of Miami, Department of Chemistry, Coral Gables, 33146, USA
| | - Angeliki Moutsiopoulou
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
- University of Miami, Department of Chemistry, Coral Gables, 33146, USA
| | - Stephanie Ioannou
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Katelyn Ahern
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Kristen Woodward
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Emre Dikici
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Sylvia Daunert
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| | - Sapna K. Deo
- University of Miami, Leonard M. Miller School of Medicine, Department of Biochemistry & Molecular Biology, Miami, 33136, USA
| |
Collapse
|
13
|
Xu Q, Zhang Y, Zhang CY. A universal sensing platform based on the repair ligation-mediated light-producing DNA machine. Chem Commun (Camb) 2016; 51:5652-5. [PMID: 25714986 DOI: 10.1039/c4cc10356d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The repair ligation-mediated light-producing DNA machine can produce light through transforming the repetitive DNA cleavage/ligation motions into optical energy without the requirement of either external reporting reagents or excitation light, and it can be applied for sensitive and selective detection of DNA, thrombin, adenosine, potassium ions (K(+)) and endonuclease even in human serum.
Collapse
Affiliation(s)
- Qinfeng Xu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | | | | |
Collapse
|
14
|
Xu Q, Zhang CY. Riboadenosine-substituted DNA probes for self-illuminating real-time monitoring of exonuclease III activity and exonuclease III-assisted target recycling. Chem Commun (Camb) 2014; 50:8047-9. [DOI: 10.1039/c4cc03021d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Xu Q, Zhu G, Zhang CY. Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label. Anal Chem 2013; 85:6915-21. [PMID: 23767867 DOI: 10.1021/ac401334r] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We develop a new homogeneous method for sensitive detection of various biomolecules on the basis of bioluminescence monitoring the released AMP from the target-triggered hybridization chain reaction-mediated ligation. The introduction of hybridization chain reaction not only improves the sensitivity of DNA assay, but also facilitates the sensitive detection of proteins by designing specific aptamer triggers, providing a universally amplified platform for simultaneous detection of different kinds of biomolecules. Importantly, this bioluminescence assay employs the target-dependent ATP from the ligation byproduct of AMP as the reporter without the requirement for the sophisticated luciferase manipulation, complicated immobilization, and separation steps. The proposed method has significant advantages of simplicity, high sensitivity, low cost, and high throughput, and holds a great promise for practical point-of-care applications.
Collapse
Affiliation(s)
- Qinfeng Xu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | |
Collapse
|
16
|
Ozawa T, Yoshimura H, Kim SB. Advances in Fluorescence and Bioluminescence Imaging. Anal Chem 2012; 85:590-609. [DOI: 10.1021/ac3031724] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sung Bae Kim
- Research Institute for Environmental Management
Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba
305-8569, Japan
| |
Collapse
|
17
|
Xiang Y, Lu Y. Using commercially available personal glucose meters for portable quantification of DNA. Anal Chem 2012; 84:1975-80. [PMID: 22235863 DOI: 10.1021/ac203014s] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA detection is commonly used in molecular biology, pathogen analysis, genetic disorder diagnosis, and forensic tests. While traditional methods for DNA detection such as polymerase chain reaction (PCR) and DNA microarrays have been well developed, they require sophisticated equipment and operations, and thus it is still challenging to develop a portable and quantitative DNA detection method for the public use at home or in the field. Although many other techniques and devices have been reported to make the DNA detection simple and portable, very few of them are currently accessible to the public for quantitative DNA detection because of either the requirement of laboratory-based instrument or lack of quantitative detection. Herein we report application of personal glucose meters (PGMs), which are widely available, low cost, and simple to use, for quantitative detection of DNA, including a hepatitis B virus DNA fragment. The quantification is based on target-dependent binding of cDNA-invertase conjugate with the analyte DNA, thereby transforming the concentration of DNA in the sample into glucose through invertase-catalyzed hydrolysis of sucrose. Instead of amplifying DNA strands through PCR, which is vulnerable to contaminations commonly encountered for home and field usage, we demonstrate here signal amplifications based on enzymatic turnovers, making it possible to detect 40 pM DNA using PGM that can detect glucose only at the mM level. The method also shows excellent selectivity toward single nucleotide mismatches.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|