1
|
Lamarca RS, Silva JP, Varoni Dos Santos JP, Ayala-Durán SC, de Lima Gomes PCF. Modular 3D-printed fluorometer/photometer for determination of iron(ii), caffeine, and ciprofloxacin in pharmaceutical samples. RSC Adv 2023; 13:12050-12058. [PMID: 37077256 PMCID: PMC10108832 DOI: 10.1039/d3ra01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023] Open
Abstract
The demand for the development of portable and low-cost analytical devices has encouraged studies employing additive manufacturing techniques, such as 3D-printing. This method can be used to produce components such as printed electrodes, photometers, and fluorometers for low-cost systems that provide advantages including low sample volume, reduced chemical waste, and easy coupling with LED-based optics and other instrumental devices. In the present work, a modular 3D-printed fluorometer/photometer was designed and applied for the determination of caffeine (CAF), ciprofloxacin (CIP), and Fe(ii) in pharmaceutical samples. All the plastic parts were printed separately by a 3D printer, using Tritan as the plastic material (black color). The final size of the modular 3D-printed device was 12 × 8 cm. The radiation sources were light-emitting diodes (LEDs), while a light dependent resistor (LDR) was used as a photodetector. The analytical curves obtained for the device were: y = 3.00 × 10-4 [CAF] + 1.00 and R 2 = 0.987 for caffeine; y = 6.90 × 10-3 [CIP] - 3.39 × 10-2 and R 2 = 0.991 for ciprofloxacin; and y = 1.12 × 10-1 [Fe(ii)] + 1.26 × 10-2 and R 2 = 0.998 for iron(ii). The results obtained using the developed device were compared with reference methods, with no statistically significant differences observed. The 3D-printed device was composed of moveable parts, providing flexibility for adaptation and application as a photometer or fluorometer, by only switching the photodetector position. The LED could also be easily switched, permitting application of the device for different purposes. The cost of the device, including the printing and electronic components, was lower than US$10. The use of 3D-printing enables the development of portable instruments for use in remote locations with a lack of research resources.
Collapse
Affiliation(s)
- Rafaela Silva Lamarca
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - João Pedro Silva
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - João Paulo Varoni Dos Santos
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - Saidy Cristina Ayala-Durán
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| |
Collapse
|
2
|
Gilani AG, Haghighat AG. A comparative photophysical study of molecular associative of structurally similar phenothiazine dyes in aqueous solutions of caffeine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Imidazole-Based Monomer as Functional Unit for the Specific Detection of Paraxanthine in Aqueous Environments. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the context of personalized medicine, the paraxanthine-to-caffeine ratio is an accepted standard for the optimization of the dose-response effect of many pharmaceuticals in individual patients. There is a strong drive towards the development of cheaper and portable devices for the detection of biomarkers, including paraxanthine and caffeine, which requires materials with high binding efficiency and specificity. We designed a recognition unit specific for paraxanthine which can discriminate molecules with small structural differences and can be used to increase the sensitivity of sensors. A number of functional units were screened by nuclear magnetic resonance for their ability to form specific binding interactions with paraxanthine in water and negligible interactions with its structural analogue caffeine. Imidazole was identified as the unit showing the most promising results and its two polymerizable derivatives were evaluated by isothermal titration calorimetry to identify the best monomer. The data suggested that 4-vinylimidazole was the most promising unit forming specific and strong binding interaction with paraxanthine. The calorimetry experiments allowed also the determination of the thermodynamic parameters of all interactions and the association constant values. Optimization of polymerization protocols in water, achieving high monomer conversions and chemical yields, demonstrate the suitability of the selected functional monomer for polymer preparations, targeting the detection of paraxanthine in aqueous environments.
Collapse
|
4
|
Francesconi O, Ienco A, Papi F, Dolce M, Catastini A, Nativi C, Roelens S. A Sulfonated Tweezer-Shaped Receptor Selectively Recognizes Caffeine in Water. J Org Chem 2022; 87:2662-2667. [PMID: 35107278 PMCID: PMC8902752 DOI: 10.1021/acs.joc.1c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
selective recognition of caffeine in water among structurally
related xanthines and purine or pyrimidine bases was achieved by a
simple tweezer-shaped receptor featuring sulfonate hydrosolubilizing
groups. The remarkable affinity for caffeine, among the highest reported
thus far in the literature and larger than that shown by adenosine
receptors of all subtypes, stems from a synergistic combination of
hydrogen bonding, CH−π, and π-stacking interactions.
Collapse
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| | - Andrea Ienco
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano, I-50019 Firenze, Italy
| | - Francesco Papi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| | - Marta Dolce
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| | - Andrea Catastini
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, Polo Scientifico e Tecnologico, University of Florence, I-50019 Firenze, Italy
| |
Collapse
|
5
|
Li H, Li F, Luo Q, Cao L, Zhang G, Xu J. High degree of polymerization of poly(1-pyrenebutyric acid) enables the ultra-trace detection of Cr2O72− in milk. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Sendh J, Singh MP, Baruah JB. 5-[(Pyren-9-ylmethyl)amino]isophthalic acid with nitrogen containing heterocycles: stacking, N–H⋯π interactions and photoluminescence. CrystEngComm 2021. [DOI: 10.1039/d1ce01099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthons guided the types of N–H⋯π interactions and stacking to cause quenching of emissions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam, India
| | - Munendra Pal Singh
- Research & Development Centre, Sun Pharmaceutical Industries Ltd., Gurgaon – 122015, Haryana, India
| | - Jubaraj B. Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam, India
| |
Collapse
|
7
|
He J, Su Y, Sun Z, Zhang R, Wu F, Bai Y. A chitosan-mediated “turn-on” strategy for rapid fluorometric detection of perfluorooctane sulfonate. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Du C, Ma C, Gu J, Li L, Chen G. Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. SENSORS 2020; 20:s20030819. [PMID: 32028737 PMCID: PMC7038766 DOI: 10.3390/s20030819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
A rapid, selective and sensitive method for the detection of caffeine in tea infusion and tea beverages are proposed by using 3,5-diaminobenzoic acid as a fluorescent probe. The 3,5-diaminobenzoic acid emits strong fluorescence around 410 nm under the excitation of light at 280 nm. Both the molecular electrostatic potential analysis and fluorescent lifetime measurement proved that the existence of caffeine can quench the fluorescence of 3,5-diaminobenzoic acid. Under the optimal experimental parameters, the 3,5-diaminobenzoic acid was used as a fluorescent probe to detect the caffeine aqueous solution. There exists a good linear relationship between the fluorescence quenching of the fluorescent probe and the concentration of caffeine in the range of 0.1–100 μM, with recovery within 96.0 to 106.2%, while the limit of detection of caffeine is 0.03 μM. This method shows a high selectivity for caffeine. The caffeine content in different tea infusions and tea beverages has been determined and compared with the results from HPLC measurement.
Collapse
Affiliation(s)
- Chenxu Du
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-139-0617-6695
| |
Collapse
|
9
|
Luchiari NDC, da Silva GA, Marasco Júnior CA, de Lima Gomes PCF. Development of miniaturized fluorimetric device for caffeine determination using a smartphone. RSC Adv 2019; 9:35033-35038. [PMID: 35530710 PMCID: PMC9074131 DOI: 10.1039/c9ra06220c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/06/2019] [Indexed: 11/30/2022] Open
Abstract
Caffeine is an element that is consumed worldwide. It is present in many products such as beverages, chocolate, coffee, tea, energy drinks and medicines. Portable 3D devices working together with colorimetric and fluorimetric reactions have been able to determine the presence of caffeine in different kinds of samples. Also, digital image-based methods using smartphones have conferred portability and accessibility to miniaturized devices that are innovative and promising options for quick and low cost analyses. This study proposes a miniaturized fluorimetric device to determine caffeine by digital image using a smartphone. The OpenCamera app was used to capture images that were processed using ImageJ software to obtain RGB channels values. The red (R) channel signal intensity was selected as the analytical response. The device developed was applied to determine caffeine in an energy drink and medicines. The method developed presented a linear range from 100 to 600 mg L−1 of caffeine, and quantification (LOQ) and detection (LOD) limits of 100 mg L−1 and 30.0 mg L−1, respectively. The caffeine concentration found in the products analyzed was 328 mg L−1 (±2.5%) for the energy drink, 345 mg L−1 (±15%) for medicine A and 322 mg L−1 (±7.3%) for medicine B. The proposed device presented important characteristics such as low cost, required small volumes of reagents and samples, quick analysis, portability and suitable to be applied in complex matrices. This study proposes a miniaturized fluorimetric device to determine caffeine in an energy drink and medicines by digital image using a smartphone.![]()
Collapse
Affiliation(s)
- Natália da Costa Luchiari
- Department of Analytical Chemistry, Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara (SP) Brazil
| | - Gabrielen Alves da Silva
- Department of Analytical Chemistry, Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara (SP) Brazil
| | - César Augusto Marasco Júnior
- Department of Analytical Chemistry, Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara (SP) Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- Department of Analytical Chemistry, Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara (SP) Brazil
| |
Collapse
|
10
|
Chapartegui-Arias A, Villajos JA, Myxa A, Beyer S, Falkenhagen J, Schneider RJ, Emmerling F. Covalently Fluorophore-Functionalized ZIF-8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers. ACS OMEGA 2019; 4:17090-17097. [PMID: 31656881 PMCID: PMC6811842 DOI: 10.1021/acsomega.9b01051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
We present the optical sensing of phthalate esters (PAEs), a group of endocrine-disrupting chemicals. The sensing takes place as changes in the fluorescence emission intensity of aminopyrene covalently bound to the organic ligands of the metal-organic framework compound ZIF-8. In the presence of PAEs, a quenching of the fluorescence emission is observed. We evaluated strategies to engineer colloidal size distribution of the sensing particles to optimize the sensory response to PAEs. A thorough characterization of the modified ZIF-8 nanoparticles included powder X-ray diffractometry, transmission electron microscopy, high-performance liquid chromatography, and photophysical characterization. The presented capability of the fluorophore-functionalized ZIF-8 to sense PAEs complements established methods such as chromatography-based procedures, which cannot be used on-site and paves the way for future developments such as hand-held quick sensing devices.
Collapse
Affiliation(s)
- Ander Chapartegui-Arias
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße
2, D-12489 Berlin, Germany
| | - Jose A. Villajos
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Anett Myxa
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Sebastian Beyer
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
- Department of Biomedical Engineering, Chinese University of Hong Kong, Room 802, 8/F, William M.W. Mong Engineering Building, Sha Tin, Hong Kong Special Administrative
Region (SAR), China
| | - Jana Falkenhagen
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Rudolf J. Schneider
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
- Technische Universität
Berlin, Straße des
17. Juni 135, D-10623 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute
for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| |
Collapse
|
11
|
Karmakar P, Manna S, Maiti K, Ali SS, Guria UN, Sarkar R, Datta P, Mandal D, Mahapatra AK. A Perylene diimide based fluorescent probe for caffeine in aqueous medium. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1530352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Parthasarathi Karmakar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Srimanta Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Kalipada Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Syed Samim Ali
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Ripon Sarkar
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| |
Collapse
|
12
|
Dey N, Maji B, Bhattacharya S. A Versatile Probe for Caffeine Detection in Real-Life Samples via Excitation-Triggered Alteration in the Sensing Behavior of Fluorescent Organic Nanoaggregates. Anal Chem 2017; 90:821-829. [DOI: 10.1021/acs.analchem.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Fukada K, Kawamura N, Shiratori S. Trace Material Capture by Controlled Liquid Droplets on a Superhydrophobic/Hydrophilic Surface. Anal Chem 2017; 89:10391-10396. [DOI: 10.1021/acs.analchem.7b02369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenta Fukada
- Center for Material Design Science, School of Integrated Design Engineering and ‡Department of Applied
Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Naoya Kawamura
- Center for Material Design Science, School of Integrated Design Engineering and ‡Department of Applied
Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Seimei Shiratori
- Center for Material Design Science, School of Integrated Design Engineering and ‡Department of Applied
Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
14
|
Wang TY, Chen CY, Wang CM, Tan YZ, Liao WS. Multicolor Functional Carbon Dots via One-Step Refluxing Synthesis. ACS Sens 2017; 2:354-363. [PMID: 28723203 DOI: 10.1021/acssensors.6b00607] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbon dots are admirable fluorescent nanomaterials due to their low cost, high photostability, excellent biocompatibility, and environmental friendliness. Most conventional carbon dot fabrication approaches produce single-colored fluorescent material in the preparation process; different methods are therefore required to synthesize distinct carbon dots for specific optical applications. In this study, carbon dots carrying different emission colors are prepared through a one-step refluxing process. The emission of these materials can be well-tuned by sodium hydroxide content in the precursor solution. The carbon dots produced are used as sensing probes based on the spectrofluorometric inner filter effect for target molecule detection. Three sensing categories that combine carbon dots and inner filter effect are demonstrated, including direct, metal nanoparticle-assisted, and enzymatic reaction-supported detection. Caffeine, melamine, and fenitrothion are selected as targets to demonstrate the strategies, respectively. These multifunctional carbon dot-based sensors achieve comparable sensitivity toward analytes with a much more convenient preparation route.
Collapse
Affiliation(s)
- Ting-Yi Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ying Zi Tan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Venkateswarulu M, Gambhir D, Kaur H, Daniel PV, Mondal P, Koner RR. A long-range emissive mega-Stokes inorganic–organic hybrid material with peripheral carboxyl functionality for As(v) recognition and its application in bioimaging. Dalton Trans 2017; 46:13118-13125. [DOI: 10.1039/c7dt02387a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We demonstrate a strategy for the recognition of As5+ in aqueous solution using a red-emissive probe based on a perylene–Cu2+ ensemble decorated with peripheral free carboxyl functionality.
Collapse
Affiliation(s)
- M. Venkateswarulu
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Diksha Gambhir
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Harpreet Kaur
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - P. Vineeth Daniel
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Prosenjit Mondal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Rik Rani Koner
- School of Engineering
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| |
Collapse
|
16
|
McCracken KE, Tat T, Paz V, Yoon JY. Smartphone-based fluorescence detection of bisphenol A from water samples. RSC Adv 2017. [DOI: 10.1039/c6ra27726h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smartphone-based quantification of bisphenol A (BPA) from water samples using the first demonstration of BPA-induced fluorescence quenching of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS).
Collapse
Affiliation(s)
| | - Trinny Tat
- Department of Biomedical Engineering
- The University of Arizona
- Tucson
- USA
| | - Veronica Paz
- Department of Biomedical Engineering
- The University of Arizona
- Tucson
- USA
| | - Jeong-Yeol Yoon
- Department of Agricultural & Biosystems Engineering
- The University of Arizona
- Tucson
- USA
- Department of Biomedical Engineering
| |
Collapse
|
17
|
Yamashina M, Matsuno S, Sei Y, Akita M, Yoshizawa M. Recognition of Multiple Methyl Groups on Aromatic Rings by a Polyaromatic Cavity. Chemistry 2016; 22:14147-50. [DOI: 10.1002/chem.201603032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Masahiro Yamashina
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Sho Matsuno
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
18
|
McCracken KE, Angus SV, Reynolds KA, Yoon JY. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones. Sci Rep 2016; 6:27529. [PMID: 27283336 PMCID: PMC4901345 DOI: 10.1038/srep27529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023] Open
Abstract
Smartphone image-based sensing of microfluidic paper analytical devices (μPADs) offers low-cost and mobile evaluation of water quality. However, consistent quantification is a challenge due to variable environmental, paper, and lighting conditions, especially across large multi-target μPADs. Compensations must be made for variations between images to achieve reproducible results without a separate lighting enclosure. We thus developed a simple method using triple-reference point normalization and a fast-Fourier transform (FFT)-based pre-processing scheme to quantify consistent reflected light intensity signals under variable lighting and channel conditions. This technique was evaluated using various light sources, lighting angles, imaging backgrounds, and imaging heights. Further testing evaluated its handle of absorbance, quenching, and relative scattering intensity measurements from assays detecting four water contaminants – Cr(VI), total chlorine, caffeine, and E. coli K12 – at similar wavelengths using the green channel of RGB images. Between assays, this algorithm reduced error from μPAD surface inconsistencies and cross-image lighting gradients. Although the algorithm could not completely remove the anomalies arising from point shadows within channels or some non-uniform background reflections, it still afforded order-of-magnitude quantification and stable assay specificity under these conditions, offering one route toward improving smartphone quantification of μPAD assays for in-field water quality monitoring.
Collapse
Affiliation(s)
- Katherine E McCracken
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Scott V Angus
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kelly A Reynolds
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jeong-Yeol Yoon
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Sahoo P, Sarkar HS, Das S, Maiti K, Uddin MR, Mandal S. Pyrene appended thymine derivative for selective turn-on fluorescence sensing of uric acid in live cells. RSC Adv 2016. [DOI: 10.1039/c6ra15980j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new ‘turn-ON’ fluorescent probe, pyrene appended thymine acetamide (PTA), with high sensitivity and selectivity for the detection of uric acid (UA) was developed and first time imaging of uric acid in living cells in water was achieved.
Collapse
Affiliation(s)
| | | | - Sujoy Das
- Department of Chemistry
- Visva-Bharati
- Santiniketan-731235
- India
| | - Kalipada Maiti
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Md Raihan Uddin
- Department of Microbiology
- University of Calcutta
- Kolkata-700019
- India
| | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata-700019
- India
| |
Collapse
|
20
|
Köstereli Z, Severin K. Array-based sensing of purine derivatives with fluorescent dyes. Org Biomol Chem 2015. [PMID: 26223489 DOI: 10.1039/c5ob01201e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural and synthetic purine derivatives such as caffeine, theophylline, 6-mercaptopurine and 8-chlorotheophylline are important drugs. Due to the structural similarity of these compounds, it is intrinsically difficult to prepare chemosensors for their selective optical detection. Here, we describe a sensor array which can be used to differentiate pharmacologically important purine derivatives with good accuracy. The array is composed of four polysufonated fluorescent dyes, all of which can bind purines viaπ-stacking interactions. The complexation of the analytes results in partial quenching of the fluorescence. The fluorescence response of the four dyes provides a characteristic signal pattern, enabling the identification of thirteen purine derivatives at low millimolar concentration. Furthermore, it is possible to use the array for obtaining information about the quantity and purity of purine samples.
Collapse
Affiliation(s)
- Ziya Köstereli
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | |
Collapse
|
21
|
Murray KA, Wodrich MD, Hu X, Corminboeuf C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chemistry 2015; 21:3987-96. [PMID: 25649221 DOI: 10.1002/chem.201405619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/06/2022]
Abstract
The chemistry of [Fe]-hydrogenase has attracted significant interest due to its ability to activate molecular hydrogen. The intriguing properties of this enzyme have prompted the synthesis of numerous small molecule mimics aimed at activating H2. Despite considerable effort, a majority of these compounds remain nonfunctional for hydrogenation reactions. By using a recently synthesized model as an entry point, seven biomimetic complexes have been examined through DFT computations to probe the influence of ligand environment on the ability of a mimic to bind and split H2. One mimic, featuring a bidentate diphosphine group incorporating an internal nitrogen base, was found to have particularly attractive energetics, prompting a study of the role played by the proton/hydride acceptor necessary to complete the catalytic cycle. Computations revealed an experimentally accessible energetic pathway involving a benzaldehyde proton/hydride acceptor and the most promising catalyst.
Collapse
Affiliation(s)
- Kevin A Murray
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | | | | | | |
Collapse
|
22
|
Sahoo P. Molecular recognition of caffeine in solution and solid state. Bioorg Chem 2015; 58:26-47. [DOI: 10.1016/j.bioorg.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
|
23
|
Corminboeuf C. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes. Acc Chem Res 2014; 47:3217-24. [PMID: 24655016 DOI: 10.1021/ar400303a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONSPECTUS: Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this success, the commonly used semilocal approximations have difficulties in properly describing attractive dispersion interactions that decay with R(-6) at large intermolecular distances. Even in the short to medium range, most semilocal density functionals fail to give an accurate description of weak interactions. The omnipresence of dispersion interactions, which are neglected in the most popular electronic structure framework, has stimulated intense developments during the past decade. In this Account, we summarize our effort to develop and implement dispersion corrections that dramatically reduce the failures of both inter- and intramolecular interaction energies. The proposed schemes range from improved variants of empirical atom pairwise dispersion correction (e.g., dD10) to robust formulations dependent upon the electron density. Emphasis has been placed on introducing more physics into a modified Tang and Toennies damping function and deriving accurate dispersion coefficients. Our most sophisticated and established density-dependent correction, dDsC, is based on a simple generalized gradient approximation (GGA)-like reformulation of the exchange hole dipole moment introduced by Becke and Johnson. Akin to its empirical precursor, dDsC dramatically improves the interaction energy of a variety of standard density functionals simultaneously for typical intermolecular complexes and shorter-range interactions occurring within molecules. The broad applicability and robustness of the dDsC scheme is demonstrated on various representative reaction energies, geometries, and molecular dynamic simulations. The suitability of the a posteriori correction is also established through comparisons with the more computationally demanding self-consistent implementation. The proposed correction is then exploited to identify the key factors at the origin of the errors in thermochemistry beyond van der Waals complexes. Particular focus is placed on charge-transfer and mixed-valence complexes, which are relevant to the field of organic electronics. These types of complexes represent insightful examples for which the delocalization error may partially counterbalance the missing dispersion. Our devised methodology reveals the true performance of standard density functional approximations and the subtle interplay between the two types of errors. The analysis presented provides guidance for future functional development that could further improve the modeling of the structures and properties of molecular materials. Overall, the proposed state-of-the-art approaches have contributed to stress the crucial role of dispersion and improve their description in both straightforward van der Waals complexes and more challenging chemical situations. For the treatment of the latter, we have also provided relevant insights into which type of density functionals to favor.
Collapse
Affiliation(s)
- Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Mohanty SK, Yu CL, Gopishetty S, Subramanian M. Validation of caffeine dehydrogenase from Pseudomonas sp. strain CBB1 as a suitable enzyme for a rapid caffeine detection and potential diagnostic test. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7939-7946. [PMID: 25019418 DOI: 10.1021/jf501598c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Excess consumption of caffeine (>400 mg/day/adult) can lead to adverse health effects. Recent introduction of caffeinated products (gums, jelly beans, energy drinks) might lead to excessive consumption, especially among children and nursing mothers, hence attracting the Food and Drug Administration's attention and product withdrawals. An "in-home" test will aid vigilant consumers in detecting caffeine in beverages and milk easily and quickly, thereby restricting its consumption. Known diagnostic methods lack speed and sensitivity. We report a caffeine dehydrogenase (Cdh)-based test which is highly sensitive (1-5 ppm) and detects caffeine in beverages and mother's milk in 1 min. Other components in these complex test samples do not interfere with the detection. Caffeine-dependent reduction of the dye iodonitrotetrazolium chloride results in shades of pink proportional to the levels in test samples. This test also estimates caffeine levels in pharmaceuticals, comparable to high-performance liquid chromatography. The Cdh-based test is the first with the desired attributes of a rapid and robust caffeine diagnostic kit.
Collapse
Affiliation(s)
- Sujit K Mohanty
- Department of Chemical and Biochemical Engineering, University of Iowa , 4133 Seamans Center, Iowa City, Iowa 52242, United States
| | | | | | | |
Collapse
|
25
|
Make caffeine visible: a fluorescent caffeine "traffic light" detector. Sci Rep 2014; 3:2255. [PMID: 23877095 PMCID: PMC3719075 DOI: 10.1038/srep02255] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 02/02/2023] Open
Abstract
Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.
Collapse
|
26
|
Schneider HJ, Agrawal P, Yatsimirsky AK. Supramolecular complexations of natural products. Chem Soc Rev 2014; 42:6777-800. [PMID: 23703643 DOI: 10.1039/c3cs60069f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Complexations of natural products with synthetic receptors as well as the use of natural products as host compounds are reviewed, with an emphasis on possible practical uses or on biomedical significance. Applications such as separation, sensing, enzyme monitoring, and protection of natural drugs are first outlined. We then discuss examples of complexes with all important classes of natural compounds, such as amino acids, peptides, nucleosides/nucleotides, carbohydrates, catecholamines, flavonoids, terpenoids/steroids, alkaloids, antibiotics and toxins.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, D 66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
27
|
Hayashi N, Ujihara T, Jin S. Recognition of caffeine by a water-soluble acyclic phane compound. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Rochat S, Swager TM. Water-Soluble Cationic Conjugated Polymers: Response to Electron-Rich Bioanalytes. J Am Chem Soc 2013; 135:17703-6. [DOI: 10.1021/ja4095395] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sébastien Rochat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Venkateswarulu M, Sinha S, Mathew J, Koner RR. Quencher displacement strategy for recognition of trivalent cations through ‘turn-on’ fluorescence signaling of an amino acid hybrid. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Petraglia R, Corminboeuf C. A Caveat on SCC-DFTB and Noncovalent Interactions Involving Sulfur Atoms. J Chem Theory Comput 2013; 9:3020-5. [PMID: 26583983 DOI: 10.1021/ct4003948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate modeling of noncovalent interactions involving sulfur today is ubiquitous, particularly with regard to the role played by sulfur-containing heterocycles in the field of organic electronics. The density functional tight binding (DFTB) method offers a good compromise between computational efficiency and accuracy, enabling the treatment of thousands of atoms at a fraction of the cost of density functional theory (DFT) evaluations. DFTB is an approximate quantum chemical approach that is based on the DFT total energy expression. Here, we address a critical issue inherent to the DFTB parametrization, which prevents the use of the DFTB framework for simulating noncovalent interactions involving sulfur atoms and precludes its combination with a dispersion correction. (1-5) Dramatic examples of structural patterns relevant to the field of organic electronics illustrate that DFTB delivers erroneous (i.e., qualitatively wrong) results involving spurious binding.
Collapse
Affiliation(s)
- Riccardo Petraglia
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Ghosh AK, Ghosh C, Gupta A. A simple approach to detect caffeine in tea beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3814-3820. [PMID: 23544959 DOI: 10.1021/jf400293u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The photophysical properties of commercially available dye Acridine Orange (AO) describe an excellent probe for selective and sensitive detection of caffeine in aqueous solution. AO exists in monomer-dimer equilibrium in water. AO monomer is a fluorophore, but the dimer is not. Addition of caffeine to the AO leads to a shift in the monomer-dimer equilibrium toward the direction of AO monomer (fluorophore) and results in enhancement of AO fluorescence intensity. Enhancement of AO fluorescence intensity in the presence of caffeine has been treated as a signal for caffeine sensor. Furthermore, the caffeine-induced shift in AO monomer-dimer equilibrium is attributed to the binding of caffeine with AO monomer, and the binding constant was higher at a low pH range (pH ~2) compared to pH ~7, which results in superior caffeine sensitivity at pH ~2. Finally, caffeine content in commercial tea beverages has been evaluated and compared with the value obtained with a standard HPLC method.
Collapse
Affiliation(s)
- Amit K Ghosh
- Unilever R&D Bangalore , 64 Main Road, Whitefield, Bangalore 560066, India
| | | | | |
Collapse
|
32
|
Wodrich MD, Hu X. Electronic Elements Governing the Binding of Small Molecules to a [Fe]-Hydrogenase Mimic. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Fluorescence sensing of caffeine in aqueous solution with carbazole-based probe and imaging application in live cells. Bioorg Med Chem Lett 2012; 22:5379-83. [DOI: 10.1016/j.bmcl.2012.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/28/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022]
|
34
|
Wodrich MD, Zhurov KO, Vorobyev A, Ben Hamidane H, Corminboeuf C, Tsybin YO. Heterolytic N–Cα Bond Cleavage in Electron Capture and Transfer Dissociation of Peptide Cations. J Phys Chem B 2012; 116:10807-15. [DOI: 10.1021/jp306703f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Wodrich
- Biomolecular
Mass Spectrometry
Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Computational
Molecular Design, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Konstantin O. Zhurov
- Biomolecular
Mass Spectrometry
Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Aleksey Vorobyev
- Biomolecular
Mass Spectrometry
Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hisham Ben Hamidane
- Biomolecular
Mass Spectrometry
Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational
Molecular Design, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry
Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Louie MW, Choi AWT, Liu HW, Chan BTN, Lo KKW. Synthesis, Emission Characteristics, Cellular Studies, and Bioconjugation Properties of Luminescent Rhenium(I) Polypyridine Complexes with a Fluorous Pendant. Organometallics 2012. [DOI: 10.1021/om3003575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Man-Wai Louie
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Alex Wing-Tat Choi
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Hua-Wei Liu
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Bruce Ting-Ngok Chan
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Kenneth Kam-Wing Lo
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| |
Collapse
|
36
|
Gonthier JF, Steinmann SN, Roch L, Ruggi A, Luisier N, Severin K, Corminboeuf C. π-Depletion as a criterion to predict π-stacking ability. Chem Commun (Camb) 2012; 48:9239-41. [DOI: 10.1039/c2cc33886f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Luisier N, Ruggi A, Steinmann SN, Favre L, Gaeng N, Corminboeuf C, Severin K. A ratiometric fluorescence sensor for caffeine. Org Biomol Chem 2012; 10:7487-90. [DOI: 10.1039/c2ob26117k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Steinmann SN, Corminboeuf C. Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. J Chem Theory Comput 2011; 7:3567-77. [DOI: 10.1021/ct200602x] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephan N. Steinmann
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|