1
|
Wu Y, Song Y, Wu D, Mao X, Yang X, Jiang S, Zhang C, Guo R. Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber. Molecules 2023; 28:molecules28062466. [PMID: 36985440 PMCID: PMC10053231 DOI: 10.3390/molecules28062466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
As a new member of the silica-derivative family, modified glass fiber (MGF) has attracted extensive attention because of its excellent properties and potential applications. Surface modification of glass fiber (GF) greatly changes its performance, resulting in a series of changes to its surface structure, wettability, electrical properties, mechanical properties, and stability. This article summarizes the latest research progress in MGF, including the different modification methods, the various properties, and their advanced applications in different fields. Finally, the challenges and possible solutions were provided for future investigations of MGF.
Collapse
Affiliation(s)
- Yawen Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Yangyang Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Di Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence: (S.J.); (R.G.); Tel.: +86-25-85428090 (S.J.); +86-27-84238886 (R.G.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
- Correspondence: (S.J.); (R.G.); Tel.: +86-25-85428090 (S.J.); +86-27-84238886 (R.G.)
| |
Collapse
|
2
|
Cesbron M, Levillain E, Breton T, Gautier C. Click Chemistry: A Versatile Method for Tuning the Composition of Mixed Organic Layers Obtained by Reduction of Diazonium Cations. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37779-37782. [PMID: 30360102 DOI: 10.1021/acsami.8b16954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Postfunctionalization of glassy carbon electrodes previously modified by reduction of 4-azidobenzenediazonium was exploited to conveniently synthesize controlled mixed organic layers. Huisgen 1,3-dipolar cycloaddition was used to anchor functional entities to azide platform. By this way, ((4-ethynylphenyl)carbamoyl)ferrocene (ϕ-Fc) was coimmobilized with a set of acetylene derivatives: 1-ethynyl-4-nitrobenzene (ϕ-NO2), 4-ethynylaniline (ϕ-NH2) or ethylnylbenzene (ϕ). The composition of the resulting organic layers was tuned by adjusting the acetylene derivatives ratio in the postfunctionalization binary solution. Electronic properties of the substituents beared by the aromatic rings were found to have a strong impact on the cycloaddition kinetics toward the confined azide moieties. From this study, rules to prepare finely tuned bifunctional organic layers can be anticipated.
Collapse
Affiliation(s)
- Marius Cesbron
- CNRS UMR 6200, Laboratoire MOLTECH-Anjou , Université d'Angers , 2 Boulevard Lavoisier , Angers Cedex 49045 , France
| | - Eric Levillain
- CNRS UMR 6200, Laboratoire MOLTECH-Anjou , Université d'Angers , 2 Boulevard Lavoisier , Angers Cedex 49045 , France
| | - Tony Breton
- CNRS UMR 6200, Laboratoire MOLTECH-Anjou , Université d'Angers , 2 Boulevard Lavoisier , Angers Cedex 49045 , France
| | - Christelle Gautier
- CNRS UMR 6200, Laboratoire MOLTECH-Anjou , Université d'Angers , 2 Boulevard Lavoisier , Angers Cedex 49045 , France
| |
Collapse
|
3
|
Surface Modification Chemistries of Materials Used in Diagnostic Platforms with Biomolecules. J CHEM-NY 2016. [DOI: 10.1155/2016/9241378] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomolecules including DNA, protein, and enzymes are of prime importance in biomedical field. There are several reports on the technologies for the detection of these biomolecules on various diagnostic platforms. It is important to note that the performance of the biosensor is highly dependent on the substrate material used and its meticulous modification for particular applications. Therefore, it is critical to understand the principles of a biosensor to identify the correct substrate material and its surface modification chemistry. The imperative surface modification for the attachment of biomolecules without losing their bioactivity is a key to sensitive detection. Therefore, finding of a modification method which gives minimum damage to the surface as well as biomolecule is highly inevitable. Different surface modification technologies are invented according to the type of a substrate used. Surface modification techniques of the materials used as platforms in the fabrication of biosensors are reviewed in this paper.
Collapse
|
4
|
|
5
|
Blanchard PY, Boisard S, Dias M, Breton T, Gautier C, Levillain E. Electrochemical transduction on self-assembled monolayers: are covalent links essential? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12067-12070. [PMID: 22866968 DOI: 10.1021/la302142w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electrochemical transduction without covalent links between redox and complexant units in a complexing self-assembled monolayer has been established. The results demonstrate that transduction depends on the crown ether/ferrocene ratio and appears to be tunable.
Collapse
Affiliation(s)
- Pierre-Yves Blanchard
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, Angers, France
| | | | | | | | | | | |
Collapse
|