1
|
Ren Z, Ma H, Geng J, Liu C, Song C, Lv Y. ZnO QDs/GO/g-C 3N 4 Preparation and Photocatalytic Properties of Composites. MICROMACHINES 2023; 14:1501. [PMID: 37630037 PMCID: PMC10456475 DOI: 10.3390/mi14081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Using an ultrasound-assisted chemical technique, ZnO quantum dot and ZnO composites were created. The optical characteristics and structural details of these composites were examined using TEM, XRD, XPS, FT-IR, UV-vis, and BET. The results revealed that both the ZnO quantum dot composite and ZnO composite exhibited outstanding optical properties, making them suitable for photocatalytic reactions. In order to analyze the photocatalytic performance, a degradation experiment was conducted using Rhodamine B solution as the simulation dye wastewater. The experiment demonstrated that the degradation of Rhodamine B followed the first-order reaction kinetics equation when combined with the photocatalytic reaction kinetics. Moreover, through cyclic stability testing, it was determined that the ZnO QDs-GO-g-C3N4 composite sample showed good stability and could be reused. The degradation rates of Rhodamine B solution using ZnO-GO-g-C3N4 and ZnO QDs-GO-g-C3N4 reached 95.25% and 97.16%, respectively. Furthermore, free-radical-trapping experiments confirmed that ·O2- was the main active species in the catalytic system and its photocatalytic mechanism was elucidated. The photocatalytic oxidation of ZnO quantum dots in this study has important reference value and provides a new idea for the subsequent research.
Collapse
Affiliation(s)
- Zhixin Ren
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Huachao Ma
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Jianxin Geng
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Cuijuan Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Chaoyu Song
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| |
Collapse
|
2
|
Pianka J, Gruba N, Lesner A. Novel tools to study West Nile virus NS3 protease activity. Bioorg Chem 2023; 133:106426. [PMID: 36801793 DOI: 10.1016/j.bioorg.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
West Nile Virus (WNV) belongs to a group of pathogenic viruses called flaviviruses. West Nile virus infection can be mild, causing so-called West Nile Fever (WNF) or severe neuroinvasive form of the disease (WNND), and ultimately even death. There are currently no known medications to prevent West Nile virus infection. Only symptomatic treatment is used. To date, there are no unequivocal tests enabling a quick and unambiguous assessment of WN virus infection. The aim of the research was to obtain specific and selective tools for determining the activity of the West Nile virus serine proteinase. Using the methods of combinatorial chemistry with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. The FRET ABZ-Ala-Lys-Gln-Arg-Gly-Gly-Thr-Tyr(3-NO2)-NH2 substrate was obtained, characterized by kinetic parameters (KM = 4.20 ± 0.32 × 10-5 M) as for the majority of proteolytic enzymes. The obtained sequence was used to develop and synthesize highly sensitive functionalized quantum dot-based protease probes (QD). A QD WNV NS3 protease probe was obtained to detect an increase in fluorescence of 0.05 nmol enzyme in the assay system. This value was at least 20 times lower than that observed with the optimized substrate. The obtained result may be the basis for further research on the potential use of the WNV NS3 protease in the diagnosis of West Nile virus infection.
Collapse
Affiliation(s)
- Joanna Pianka
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| | - Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Li D, Aubertin K, Onidas D, Nizard P, Félidj N, Gazeau F, Mangeney C, Luo Y. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1795. [PMID: 35362261 DOI: 10.1002/wnan.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging powerful vibrational technique offering unprecedented opportunities in biomedical science for the sensitive detection of biomarkers and the imaging and tracking of biological samples. Conventional SERS detection is based on the use of plasmonic substrates (e.g., Au and Ag nanostructures), which exhibit very high enhancement factors (EF = 1010 -1011 ) but suffers from serious limitations, including light-induced local heating effect due to ohmic loss and expensive price. These drawbacks may limit detection accuracy and large-scaled practical applications. In this review, we focus on alternative approaches based on plasmon-free SERS detection on low-cost nanostructures, such as carbons, oxides, chalcogenides, polymers, silicons, and so forth. The mechanism of non-plasmonic SERS detection has been attributed to interfacial charge transfer between the substrate and the adsorbed molecules, with no photothermal side-effects but usually less EF compared with plasmonic nanostructures. The strategies to improve Raman signal detection, through the tailoring of substrate composition, structure, and surface chemistry, is reviewed and discussed. The biomedical applications, for example, SERS cell characterization, biosensing, and bioimaging are also presented, highlighting the importance of substrate surface functionalization to achieve sensitive, accurate analysis, and excellent biocompatibility. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Da Li
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Kelly Aubertin
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Delphine Onidas
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Philippe Nizard
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Nordin Félidj
- ITODYS, CNRS UMR 7086, Université Paris Cité, 15, rue Jean Antoine de Baïf, Paris, France
| | - Florence Gazeau
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Claire Mangeney
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Yun Luo
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| |
Collapse
|
4
|
Chatterjee S, Kar AK. Synergistic influence of FRET, bulk recombination centers, and charge separation in enhancing the visible-light-driven photocatalytic activity of Cu 2+-ion-doped ZnO nanoflowers. Phys Chem Chem Phys 2022; 24:16281-16299. [PMID: 35758416 DOI: 10.1039/d2cp01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure ZnO and a group of Cu2+-ion-doped (4, 6, and 8 wt%) ZnO nanomaterials are synthesized using the co-precipitation technique. X-ray diffraction and Fourier transform infrared spectroscopy confirm both the substitution of Zn2+ ions by Cu2+ ions in the ZnO lattice and formation of the ZnO/CuO composite. The divalent oxidation state of Cu is confirmed using X-ray photoelectron spectroscopy. A suppression in the oxygen vacancy density is observed up to a doping level of 6 wt%, but beyond that it increases. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show a cross-linked nanoflower-like structure. The presence of a separate CuO phase is also confirmed via TEM. Absorption spectroscopy yields a reduction in the bandgap up to 6 wt%, after which it is increased for 8 wt%. An enhanced plasmon band in the spectra reveals the presence of CuO. The photoluminescence is quenched for doping up to 6 wt%, and with further doping the emission is enhanced. These observations are explained by the doping-concentration-dependent Förster resonance energy transfer (FRET) phenomenon between the ZnO (donor) and the CuO (acceptor). For the highest doping concentration, the emission profile shows a sudden enhancement resulting from the simultaneous competition of two FRET mechanisms (the intra-acceptor mechanism and the inter-donor-acceptor mechanism). By contrast, for other doped nanomaterials, the inter-donor-acceptor FRET mechanism with doping-concentration dependence is able to explain the suppression of the emission intensity. All doped nanomaterials show an improved visible-light-driven photocatalytic efficiency compared with pure ZnO for methylene blue, which results from the synergistic effects of a reduction in the concentration of bulk defects, enhanced charge separation, and FRET. The highest photocatalytic performance is demonstrated by the 6 wt% nanomaterial due to its optimum doping concentration. However, beyond this concentration, the formation of excessive CuO on the surface of ZnO increases the concentration of bulk defects, and the simultaneous occurrence of the inter-donor-acceptor FRET and intra-acceptor FRET mechanisms takes place leading to the rapid recombination of electron-hole pairs and reduced photocatalytic activity.
Collapse
Affiliation(s)
- Sathi Chatterjee
- Micro and Nano-science Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Asit Kumar Kar
- Micro and Nano-science Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
5
|
Ogurcovs A, Kadiwala K, Sledevskis E, Krasovska M, Plaksenkova I, Butanovs E. Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:3408. [PMID: 35591098 PMCID: PMC9101190 DOI: 10.3390/s22093408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Field-effect transistor-based biosensors (bio-FETs) are promising candidates for the rapid high-sensitivity and high-selectivity sensing of various analytes in healthcare, clinical diagnostics, and the food industry. However, bio-FETs still have several unresolved problems that hinder their technological transfer, such as electrical stability. Therefore, it is important to develop reliable, efficient devices and establish facile electrochemical characterization methods. In this work, we have fabricated a flexible biosensor based on an Al:ZnO thin-film transistor (TFT) gated through an aqueous electrolyte on a polyimide substrate. In addition, we demonstrated techniques for establishing the operating range of such devices. The Al:ZnO-based devices with a channel length/width ratio of 12.35 and a channel thickness of 50 nm were produced at room temperature via magnetron sputtering. These Al:ZnO-based devices exhibited high field-effect mobility (μ = 6.85 cm2/Vs) and threshold voltage (Vth = 654 mV), thus showing promise for application on temperature-sensitive substrates. X-ray photoelectron spectroscopy was used to verify the chemical composition of the deposited films, while the morphological aspects of the films were assessed using scanning electron and atomic force microscopies. The gate-channel electric capacitance of 40 nF/cm2 was determined using electrochemical impedance spectroscopy, while the electrochemical window of the gate-channel system was determined as 1.8 V (from -0.6 V to +1.2 V) using cyclic voltammetry. A deionized water solution of 10 mer (CCC AAG GTC C) DNA aptamer (molar weight -2972.9 g/mol) in a concentration ranging from 1-1000 pM/μL was used as an analyte. An increase in aptamer concentration caused a proportional decrease in the TFT channel conductivity. The techniques demonstrated in this work can be applied to optimize the operating parameters of various semiconductor materials in order to create a universal detection platform for biosensing applications, such as multi-element FET sensor arrays based on various composition nanostructured films, which use advanced neural network signal processing.
Collapse
Affiliation(s)
- Andrejs Ogurcovs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia; (K.K.); (E.B.)
| | - Kevon Kadiwala
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia; (K.K.); (E.B.)
| | - Eriks Sledevskis
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia; (E.S.); (M.K.)
| | - Marina Krasovska
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia; (E.S.); (M.K.)
| | - Ilona Plaksenkova
- Laboratory of Genomics and Biotechnology, Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia;
| | - Edgars Butanovs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia; (K.K.); (E.B.)
| |
Collapse
|
6
|
Xu X, Zhao C, Qian K, Sun M, Hao Y, Han L, Wang C, Ma C, White JC, Xing B. Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118723. [PMID: 34952181 DOI: 10.1016/j.envpol.2021.118723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated that the potential of soil or foliar applied 15 mg/L zinc oxide quantum dots (ZnO QD, 11.7 nm) to enhance pumpkin (Cucurbita moschata Duch.) growth and biomass in comparison with the equivalent concentrations of other sizes of ZnO particles, ZnO nanoparticles (ZnO NPs, 43.3 nm) and ZnO bulk particles (ZnO BPs, 496.7 nm). In addition, ZnSO4 was used to set a Zn2+ ionic control. For foliar exposure, ZnO QD increased dry mass by 56% relative to the controls and values were 17.3% greater than that of the ZnO NPs particles. The cumulative water loss in the ZnO QD treatment was 10% greater than with ZnO NPs, suggesting that QD could better enhance pumpkin growth. For the root exposure, biomass and accumulative water loss equivalent across all Zn treatments. No adverse effects in terms of pigment (chlorophyll and anthocyanin) contents were evident across all Zn types regardless exposure routes. Foliar exposure to ZnO QD caused 40% increases in shoot Zn content as compared to the control; the highest Zn content was evident in the Zn2+ ionic treatment, although this did not lead to growth enhancement. In addition, the shoot and root content of other macro- and micro-nutrients were largely equivalent across all the treatments. The contents of other nutritional compounds, including amino acids, total protein and sugar, were also significantly increased by foliar exposure of ZnO QD. The total protein in the ZnO QD was 53% higher than the ZnO particle treatments in the root exposure group. Taken together, our findings suggest that ZnO QDs have significant potential as a novel and sustainable nano-enabled agrichemical and strategies should be developed to optimize benefit conferred to amended crops.
Collapse
Affiliation(s)
- Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chenchen Zhao
- College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Min Sun
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
Rabbani M, Shokraiyan J, Rahimi R, Amrollahi R. Comparison of photocatalytic activity of ZnO, Ag-ZnO, Cu-ZnO, Ag, Cu-ZnO and TPPS/ZnO for the degradation of methylene blue under UV and visible light irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1813-1825. [PMID: 34662315 DOI: 10.2166/wst.2021.360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, zinc oxide and silver and copper-doped zinc oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-ray powder diffraction, scanning electron microscopy, UV-visible spectroscopy, diffuse reflectance spectroscopy, and Fourier transform Infrared spectroscopy. The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.
Collapse
Affiliation(s)
- Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| | - Javad Shokraiyan
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail: ; Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| | - Rezvaneh Amrollahi
- Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
8
|
Fan P, Yang C, Wang L, Wang Q, Zhang Y, Zhou J, Weng J, Feng B. ZnO nanoparticles stimulate oxidative stress to induce apoptosis of B16F10 melanoma cells: In vitroand in vivostudies. Biomed Phys Eng Express 2021; 7. [PMID: 34500439 DOI: 10.1088/2057-1976/ac251f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is one of the most aggressive skin cancers. However, there remain many limitations in the current clinical treatments of it. Zinc oxide nanoparticles (ZnO NPs) have been considered to be a promising antitumor drug due to their excellent biocompatibility, biodegradability and biofunctionality. In this study, we prepared spherical ZnO NPs with an average diameter of less than 10 nm by a simple chemical method. According to thein vitrocytotoxicity assay, ZnO NPs in a certain concentration range (20-35μg ml-1) showed significant cytotoxicity to B16F10 melanoma cells, while having little effect on the viability of 3T3L1 fibroblasts. When cultured with B16F10 melanoma cells, ZnO NPs induced the generation of reactive oxygen and mitochondrial superoxide through the release of Zn2+, leading to oxidative stress in the cells, further reducing the mitochondrial membrane potential and decreasing the number of mitochondrial cristae. Furthermore, damaged mitochondria induced the release of apoptosis factors to promote cell apoptosis. FITC-Annexin V/propidium iodide double staining assay was used to analyze different apoptosis stages of B16F10 cells induced by ZnO NPs. A polymer hydrogel (Gel-F127-ZnO NPs) with Pluronic F127 as the carrier of ZnO NPs was fabricated for evaluating the antitumor effect of ZnO NPsin vivo. Thein vivoexperiment indicated that the tumor recurrence was significantly inhibited in tumor-bearing mice after treated with Gel-F127-ZnO NPs. Conclusively, ZnO NPs showed a strong antitumor effect bothin vitroandin vivo.
Collapse
Affiliation(s)
- Ping Fan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Congling Yang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Li Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Qiling Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jie Zhou
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
9
|
Liang Z, Pan X, Li W, Kou E, Kang Y, Lei B, Song S. Dose-Dependent Effect of ZnO Quantum Dots for Lettuce Growth. ACS OMEGA 2021; 6:10141-10149. [PMID: 34056168 PMCID: PMC8153660 DOI: 10.1021/acsomega.1c00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
As the cadmium-free semiconductor quantum dots, ZnO quantum dots (ZnO QDs) have wide potential applications in agriculture. However, the effects of ZnO quantum dots on crop growth and nutritional quality have not been fully studied. In this work, the lettuce was sprayed with different concentrations of ZnO QDs from 50 to 500 mg·L-1 to evaluate their influence on lettuce antioxidant, biomass, and nutritional quality. The results showed that ZnO QDs existed in the lettuce in the form of Zn2+. Lettuce treated with 500 mg·L-1 ZnO QDs would produce a large amount of reactive oxygen species (ROS), which adversely affected the absorption of nutrients, soluble protein content, and chlorophyll content, thus reducing plant biomass. When the concentrations range from 50 to 200 mg·L-1, the antioxidant enzyme systems of lettuce were triggered to counteract the damage caused by excessive ROS. Moreover, ZnO QDs at this level promoted Ca, Mg, Fe, Mn, Zn, and B absorption and accumulation; increased soluble sugar content; and improved the lettuce biomass and nutritional quality.
Collapse
Affiliation(s)
- Zhihao Liang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Xiaoqin Pan
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Erfeng Kou
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Yunyan Kang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
- Maoming
Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P. R. China
| | - Shiwei Song
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| |
Collapse
|
10
|
Zhang X, Luo S, Wu X, Feng M, Li Y, Han H, Li W. Effect of alkali bases on the synthesis of ZnO quantum dots. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The surface-modified zinc oxide quantum dots (ZnO QDs) have broad application prospects in the field of biomedicine because of their good water solubility, dispersibility, and high fluorescence stability. The alkali bases play important roles in controlling the morphology, size distribution, dispersity, and fluorescence intensity of the synthesized ZnO QDs. In this article, ZnO QDs were synthesized to induce hydrolysis–condensation reaction. The influences of alkali bases (LiOH, NaOH, and KOH) and the ratio of n(Zn2+):n(OH−) on the properties of synthesized ZnO QDs were investigated. The results show that the particle size of the ZnO QDs prepared using LiOH and NaOH as raw materials are smaller than that using KOH. ZnO QDs prepared at the ratio of n(Zn2+):n(LiOH) = 1:1 have the best fluorescence performance and dispersibility.
Collapse
Affiliation(s)
- Xilian Zhang
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| | - Shanshan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and MOE Biomass Energy Center, Nanchang University , Nanchang 330013 , People’s Republic of China
| | - Minghui Feng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| | - Yingying Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| | - Haoyun Han
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| | - Wenkui Li
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University , Nanchang 330013 , People’s Republic of China
| |
Collapse
|
11
|
Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01957-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Nain V, Kaur M, Sandhu KS, Thory R, Sinhmar A. Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. Int J Biol Macromol 2020; 162:24-30. [DOI: 10.1016/j.ijbiomac.2020.06.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
|
13
|
Balogun SW, James OO, Sanusi YK, Olayinka OH. Green synthesis and characterization of zinc oxide nanoparticles using bashful (Mimosa pudica), leaf extract: a precursor for organic electronics applications. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2127-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
14
|
Patrinoiu G, Dumitru R, Culita DC, Munteanu C, Birjega R, Calderon-Moreno JM, Cucos A, Pelinescu D, Chifiriuc MC, Bleotu C, Carp O. Self-assembled zinc oxide hierarchical structures with enhanced antibacterial properties from stacked chain-like zinc oxalate compounds. J Colloid Interface Sci 2019; 552:258-270. [PMID: 31129297 DOI: 10.1016/j.jcis.2019.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Single ZnO crystallites assembled into porous hierarchical structures have been prepared by topotactic thermal decomposition of in situ obtained zinc oxalate precursors, whose synthesis involves a redox reaction between 1,2-ethanediol and nitrate ion. For the first time it was demonstrated that post-synthesis protocols of the precursors (e.g. ultrasound irradiation, hydrolytic decomposition) master the hydrogen bonds formed between oxalate chains, allowing that way the adjustment of materials properties (morphology, porosity and optical) and a rational introduction of different dopants (Eu3+/Er3+). The ZnO surface reactivity is confirmed by the significant biocidal activity of the obtained materials against Gram-positive and Gram-negative planktonic and biofilm-embedded cells, superior to those reported in the literature for other ZnO-based materials or antibiotics, associated also with a good biocompatibility.
Collapse
Affiliation(s)
- Greta Patrinoiu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Raluca Dumitru
- Faculty for Industrial Chemistry and Environmental Engineering, University "Politehnica" of Timisoara, Piata Victoria, 30006 Timisoara, Romania
| | - Dana C Culita
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Cornel Munteanu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Ruxandra Birjega
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, PO-Box MG-36, 077125 Magurele, Romania
| | - José M Calderon-Moreno
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Andrei Cucos
- National Institute for Research and Development in Electrical Engineering, ICPE-CA, Advanced Research, Splaiul Unirii 313, 030138 Bucharest, Romania
| | - Diana Pelinescu
- University of Bucharest, Faculty of Biology, Microbiology Department, 1-3 Portocalilor Way and The Research Institute of the University of Bucharest, ICUB, Spl. Independentei 91-95, Bucharest, Romania
| | - Mariana C Chifiriuc
- University of Bucharest, Faculty of Biology, Microbiology Department, 1-3 Portocalilor Way and The Research Institute of the University of Bucharest, ICUB, Spl. Independentei 91-95, Bucharest, Romania
| | - Coralia Bleotu
- "St. S. Nicolau" Institute of Virology, 285, Sos. Mihai Bravu, Bucharest 030304, Romania
| | - Oana Carp
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania.
| |
Collapse
|
15
|
Kim J, Jang Y, Kim NJ, Kim H, Yi GC, Shin Y, Kim MH, Yoon S. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS). Front Chem 2019; 7:582. [PMID: 31482089 PMCID: PMC6710363 DOI: 10.3389/fchem.2019.00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 12/02/2022] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) has been intensively investigated during the past decades for its enormous electromagnetic field enhancement near the nanoscale metallic surfaces. Chemical enhancement of SERS, however, remains rather elusive despite intensive research efforts, mainly due to the relatively complex enhancing factors and inconsistent experimental results. To study details of chemical enhancement mechanism, we prepared various low dimensional semiconductor substrates such as ZnO and GaN that were fabricated via metal organic chemical vapor deposition process. We used three kinds of molecules (4-MPY, 4-MBA, 4-ATP) as analytes to measure SERS spectra under non-plasmonic conditions to understand charge transfer mechanisms between a substrate and analyte molecules leading to chemical enhancement. We observed that there is a preferential route for charge transfer responsible for chemical enhancement, that is, there exists a dominant enhancement process in non-plasmonic SERS. To further confirm our idea of charge transfer mechanism, we used a combination of 2-dimensional transition metal dichalcogenide substrates and analyte molecules. We also observed significant enhancement of Raman signal from molecules adsorbed on 2-dimensional transition metal dichalcogenide surface that is completely consistent with our previous results. We also discuss crucial factors for increasing enhancement factors for chemical enhancement without involving plasmonic resonance.
Collapse
Affiliation(s)
- Jayeong Kim
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Yujin Jang
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Nam-Jung Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Heehun Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Gyu-Chul Yi
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Yukyung Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Seokhyun Yoon
- Department of Physics, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
16
|
Gao X, Liu Y, Wang Y, Zhang Q, Liu X, Tang Y, Li J. A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Zinc Oxide (ZnO) and Porphyrin for the Detection of Trimethylamine in Aquatic Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01488-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Aditya A, Chattopadhyay S, Gupta N, Alam S, Veedu AP, Pal M, Singh A, Santhiya D, Ansari KM, Ganguli M. ZnO Nanoparticles Modified with an Amphipathic Peptide Show Improved Photoprotection in Skin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:56-72. [PMID: 30507150 DOI: 10.1021/acsami.8b08431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ZnO nanoparticles of different sizes were functionalized with an amphipathic peptide, and its effect on nanoparticle stabilization and UV photoprotective activity was studied in this article. The peptide-modified nanoparticles exhibited lower aggregation, significant reduction in Zn2+ leaching in vitro and even inside the cells for smaller particle sizes, reduced photocatalytic activity, and reduced cellular toxicity under UV-B treated conditions. In addition, the peptide-modified 60 nm ZnO nanoparticles showed lower genotoxicity, lower oxidative stress induction levels, less DNA damage responses, and less immunogenic potential than the bare counterparts in the presence of UV-B rays. They localized more in the stratum corneum and epidermis ex vivo, indicating better retention in epidermis, and demonstrated improved UV-B protection and/or skin integrity in SKH-1 mice in vivo compared to unmodified nanoparticles and commercial UV-protective agents tested. To our knowledge, this is the first report on the application of peptide-modified ZnO nanoparticles for improved photoprotection.
Collapse
Affiliation(s)
- Anusha Aditya
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| | | | - Nidhi Gupta
- Department of Applied Chemistry and Polymer Technology , Delhi Technological University , New Delhi 110042 , India
| | - Shamshad Alam
- CSIR - Indian Institute of Toxicology Research , Post Box No. 80, Mahatma Gandhi Marg , Lucknow , Uttar Pradesh 226001 , India
| | - Archana Palillam Veedu
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Mrinmoy Pal
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Archana Singh
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| | - Deenan Santhiya
- Department of Applied Chemistry and Polymer Technology , Delhi Technological University , New Delhi 110042 , India
| | - Kausar M Ansari
- CSIR - Indian Institute of Toxicology Research , Post Box No. 80, Mahatma Gandhi Marg , Lucknow , Uttar Pradesh 226001 , India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi 110001 , India
| |
Collapse
|
18
|
Popow-Stellmaszyk J, Bajorowicz B, Malankowska A, Wysocka M, Klimczuk T, Zaleska-Medynska A, Lesner A. Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity. Bioconjug Chem 2018; 29:1576-1583. [DOI: 10.1021/acs.bioconjchem.8b00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Tomasz Klimczuk
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk 80-233, Poland
| | | | | |
Collapse
|
19
|
Shiryaev MA, Jin YJ, Bong HC, Baranov A. ZnO Nanoparticle Modification by Polyethylenimine for Biomolecule Conjugation. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s199507801706009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta AK. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:414-423. [PMID: 29239610 DOI: 10.1021/acs.jafc.7b04188] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼107 M-1). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (105 Ω to 7 × 104 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.
Collapse
Affiliation(s)
- Dibakar Sahoo
- Department of Biochemistry, University of Calcutta , Kolkata 700019, India
| | - Abhishek Mandal
- ICAR-Indian Agricultural Research Institute , New Delhi 110012, India
| | - Tapas Mitra
- Department of Biochemistry, University of Calcutta , Kolkata 700019, India
| | - Kaushik Chakraborty
- Center for Research in NanoScience and NanoTechnology, University of Calcutta , Kolkata 700098, India
| | - Munmun Bardhan
- Chemical Sciences Division, Saha Institute of Nuclear Physics , Kolkata 700064, India
| | | |
Collapse
|
21
|
Thomas SS, Coleman M, Carroll E, Polo E, Meder F, Dawson KA. Locating Reactive Groups on Nanomaterials with Gold Nanoclusters: Toward a Surface Reactive Site Map. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5086-5097. [PMID: 28463506 DOI: 10.1021/acs.langmuir.7b00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs) are often functionalized with reactive groups such as amines and thiols for the subsequent conjugation of further molecules, e.g., stabilizing polymers, drugs, and proteins for targeting cells or specific diseases. In addition to the quantitative estimation of the reactive conjugation sites, their molecular positioning and nanoscale arrangement on single nanoparticles become more and more important for the tailored engineering and design of functional nanomaterials. Here, we use maleimide or sulfo-succinimidyl ester-modified 1.4 nm gold nanoclusters (AuNCs) to specifically label reactive thiol and amine groups with sub-2-nm precision on metal oxide and polymeric nanostructures. We confirm the binding of AuNCs by measuring and modeling sedimentation properties using analytical centrifugation, imaging their surface distribution and surface distances by transmission electron microscopy (TEM), and comparing the results to ensemble measurements of numbers of reactive surface groups obtained by common photometric assays. We map thiol and amine groups introduced on silica NPs (SiNPs), titania stars (Ti), silica inverse opals (SiOps), and polystyrene NPs (PS NPs). We show that the method is suitable for mapping local, clustered inhomogeneities of the reactive sites on single SiNPs introduced by masking certain areas during surface functionalization. Mapping precise positions of reactive surface groups is essential to the design and tailored ligation of multifunctional nanomaterials.
Collapse
Affiliation(s)
- Steffi S Thomas
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Matthew Coleman
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Emma Carroll
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Fabian Meder
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Rewritable Painting Realized from Ambient-Sensitive Fluorescence of ZnO Nanoparticles. Sci Rep 2017; 7:42232. [PMID: 28169344 PMCID: PMC5294571 DOI: 10.1038/srep42232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 11/18/2022] Open
Abstract
Paper, as one of the most important information carriers, has contributed to the development and transmission of human civilization greatly. Meanwhile, a serious problem of environmental sustainable development caused by the production and utilization of paper has been resulted to modern society. Therefore, a simple and green route is urgently demanded to realize rewritable painting on paper. Herein, a simple route to rewritable painting on copy paper has been demonstrated by using eco-friendly ZnO nanoparticles (NPs) as fluorescent ink, and vinegar and soda that are frequently used in kitchen as erasing and neutralizing agents. Words or patterns written using the ZnO NPs as ink can be erased by vinegar vapour within five seconds, and after a neutralizing process in the ambient of soda vapour, the paper can be used for writing again. It is worth noting that the resolution and precision of the patterns produced via the above route degrade little after ten rewriting cycles, and the quality of the patterns produced using the ZnO NPs as ink fades little after being storage for several months, which promises the versatile potential applications of the rewriting route proposed in this paper.
Collapse
|
23
|
Matuła K, Richter Ł, Adamkiewicz W, Åkerström B, Paczesny J, Hołyst R. Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells. SOFT MATTER 2016; 12:4162-4169. [PMID: 27074722 DOI: 10.1039/c6sm00336b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)μm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics.
Collapse
Affiliation(s)
- Kinga Matuła
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Sang CH, Chou SJ, Pan F, Sheu JT. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices. Biosens Bioelectron 2016; 75:285-92. [DOI: 10.1016/j.bios.2015.08.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022]
|
25
|
Rahimi R, Shokraiyan J, Rabbani M, Fayyaz F. Enhanced photobactericidal activity of ZnO nanorods modified by meso-tetrakis(4-sulfonatophenyl)porphyrin under visible LED lamp irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1249-54. [PMID: 25909737 DOI: 10.2166/wst.2015.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy. In addition, the photobactericidal activity of TPPS/ZnO composite, TPPS and ZnO nanorods was tested against the pathogenic bacterium of Escherichia coli under visible LED lamp irradiation. The results indicate that the photobactericidal activity of TPPS-loaded ZnO nanorods was better than TPPS or ZnO nanorods, separately.
Collapse
Affiliation(s)
- Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| | - Javad Shokraiyan
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| | - Fatemeh Fayyaz
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran E-mail:
| |
Collapse
|
26
|
Kumar DR, Manoj D, Santhanalakshmi J. Au–ZnO bullet-like heterodimer nanoparticles: synthesis and use for enhanced nonenzymatic electrochemical determination of glucose. RSC Adv 2014. [DOI: 10.1039/c3ra45269g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Zhao D, Song H, Hao L, Liu X, Zhang L, Lv Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 2013; 107:133-9. [PMID: 23598203 DOI: 10.1016/j.talanta.2013.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 12/23/2022]
Abstract
Water-soluble and luminescent ZnO quantum dots (QDs) capped by (3-aminopropyl) triethoxysilane (APTES) are environment-friendly with strong photoluminescence (max. wavelength: 530 nm). Interestingly, it was found that the fluorescence could be quenched by dopamine (DA) directly. On the basis of above, a novel ZnO QDs based fluorescent probe has been successfully designed to detect DA with high selectivity and sensitivity. Moreover, the possible fluorescence quenching mechanism was proposed, which showed that the quenching effect may be caused by the electron transfer from ZnO QDs to oxidized dopamine-quinone. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of DA within the range from 0.05 to 10 μM, with the detection limit down to 12 nM (n=3). Also, the selectivity experiment indicated the probe had a high selectivity for DA over a number of possible interfering species. Finally, this method was successfully used to detect DA in serum samples with quantitative recoveries (99-110%). With excellent selectivity and high sensitivity, it is believed that the ZnO QDs based fluorescent probe has a potential for the practical application in clinical analysis.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | | | | | | | | | | |
Collapse
|
28
|
Mondal C, Ganguly M, Sinha AK, Pal J, Pal T. Fabrication of a ZnO nanocolumnar thin film on a glass slide and its reversible switching from a superhydrophobic to a superhydrophilic state. RSC Adv 2013. [DOI: 10.1039/c3ra40312b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|