1
|
Yu Z, Shi M, Wei Y. Mechanistic Studies on Rhodium-Catalyzed Chemoselective Cycloaddition of Ene-Vinylidenecyclopropanes: Water-Assisted Proton Transfer. Molecules 2024; 29:1085. [PMID: 38474597 DOI: 10.3390/molecules29051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Rhodium-catalyzed cycloaddition reactions are a powerful tool for the construction of polycyclic compounds. Combined experimental and DFT studies were used to investigate the temperature-controlled chemoselectivity of cationic rhodium-catalyzed intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes. After a series of mechanistic studies, it was found that trace amounts of water in the reaction system play an important role in generating the product with endo double bond located on a five-membered ring and revealed that trace amounts of water in the reaction system, including the rhodium catalyst, substrate and solvent, were sufficient to promote the formation of the product with endo double bond located on a five-membered ring, and additional water could not further accelerate the reaction. DFT calculation results show that the addition of water indeed significantly lowers the energy barrier of the proton transfer step, making the formation of the product with endo double bond located on a five-membered ring more likely to occur and confirming the rationality of water-assisted proton transfer occurring in the selective access to the product with endo double bond located on a five-membered ring.
Collapse
Affiliation(s)
- Ziqi Yu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, China
| | - Min Shi
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Kiamiloglou D, Girousi S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. BIOSENSORS 2023; 13:651. [PMID: 37367016 PMCID: PMC10296722 DOI: 10.3390/bios13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Vitamins comprise a group of organic chemical compounds that contribute significantly to the normal functioning of living organisms. Although they are biosynthesized in living organisms, some are also obtained from the diet to meet the needs of organisms, which is why they are characterized as essential chemical compounds. The lack, or low concentrations, of vitamins in the human body causes the development of metabolic dysfunctions, and for this reason their daily intake with food or as supplements, as well as the control of their levels, are necessary. The determination of vitamins is mainly accomplished by using analytical methods, such as chromatographic, spectroscopic, and spectrometric methods, while studies are carried out to develop new and faster methodologies and techniques for their analysis such as electroanalytical methods, the most common of which are voltammetry methods. In this work, a study is reported that was carried out on the determination of vitamins using both electroanalytical techniques, the common significant of which is the voltammetry technique that has been developed in recent years. Specifically, the present review presents a detailed bibliographic survey including, but not limited to, both electrode surfaces that have been modified with nanomaterials and serve as (bio)sensors as well as electrochemical detectors applied in the determination of vitamins.
Collapse
Affiliation(s)
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Webster RD. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. Molecules 2022; 27:6194. [PMID: 36234726 PMCID: PMC9571374 DOI: 10.3390/molecules27196194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para-quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α-tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other β-, γ- and δ-isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α-tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para-quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.
Collapse
Affiliation(s)
- Richard D. Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore;
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore
| |
Collapse
|
4
|
Sakaya A, Durantini AM, Gidi Y, Šverko T, Wieczny V, McCain J, Cosa G. Fluorescence-Amplified Detection of Redox Turnovers in Supported Lipid Bilayers Illuminates Redox Processes of α-Tocopherol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13872-13882. [PMID: 35266688 DOI: 10.1021/acsami.1c23931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Tara Šverko
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Vincent Wieczny
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
5
|
Chan KK, Hamid MSB, Webster RD. Oxidation of capsaicin in acetonitrile in dry and wet conditions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Monkcom EC, de Bruin D, de Vries AJ, Lutz M, Ye S, Klein Gebbink RJM. Structurally Modelling the 2-His-1-Carboxylate Facial Triad with a Bulky N,N,O Phenolate Ligand. Chemistry 2021; 27:5191-5204. [PMID: 33326655 PMCID: PMC8048785 DOI: 10.1002/chem.202004633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/25/2022]
Abstract
We present the synthesis and coordination chemistry of a bulky, tripodal N,N,O ligand, ImPh2NNOtBu (L), designed to model the 2‐His‐1‐carboxylate facial triad (2H1C) by means of two imidazole groups and an anionic 2,4‐di‐tert‐butyl‐subtituted phenolate. Reacting K‐L with MCl2 (M = Fe, Zn) affords the isostructural, tetrahedral non‐heme complexes [Fe(L)(Cl)] (1) and [Zn(L)(Cl)] (2) in high yield. The tridentate N,N,O ligand coordination observed in their X‐ray crystal structures remains intact and well‐defined in MeCN and CH2Cl2 solution. Reacting 2 with NaSPh affords a tetrahedral zinc thiolate complex, [Zn(L)(SPh)] (4), that is relevant to isopenicillin N synthase (IPNS) biomimicry. Cyclic voltammetry studies demonstrate the ligand's redox non‐innocence, where phenolate oxidation is the first electrochemical response observed in K‐L, 2 and 4. However, the first electrochemical oxidation in 1 is iron‐centred, the assignment of which is supported by DFT calculations. Overall, ImPh2NNOtBu provides access to well‐defined mononuclear, monoligated, N,N,O‐bound metal complexes, enabling more accurate structural modelling of the 2H1C to be achieved.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Daniël de Bruin
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Annemiek J de Vries
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
7
|
Çelik HH, Özcan S, Mülazımoğlu AD, Yılmaz E, Mercimek B, Çukurovalı A, Yılmaz İ, Solak AO, Mülazımoğlu İE. The synthesis of a novel DDPHC diazonium salt: Investigation of its usability in the determination of phenol and chlorophenols using CV, SWV and DPV techniques. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Yan C, Huang X, Chen J, Guo H, Shao H. Study on Preferential Solvation of Water by Electrochemical Method. ELECTROANAL 2019. [DOI: 10.1002/elan.201900243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxia Yan
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P.R. China
| | - Ximing Huang
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P.R. China
| | - Jingchao Chen
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P.R. China
| | - Haixia Guo
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P.R. China
| | - Huibo Shao
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P.R. China
| |
Collapse
|
9
|
Chan KK, Hamid MSB, Webster RD. Quantification of capsaicinoids in chillies by solid-phase extraction coupled with voltammetry. Food Chem 2018; 265:152-158. [PMID: 29884366 DOI: 10.1016/j.foodchem.2018.05.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Capsaicinoids were extracted from a range of spices and chillies using methanol, prior to concentrating the compounds using solid-phase extraction cartridges and water/methanol (50:50% v/v) as the solvent, followed by elution with acetonitrile. The primary extraction procedure, involving only sonication of the spices in methanol, gave results comparable to a procedure that used a combination of sonication, stirring and centrifuging. The voltammetric quantification of the capsaicinoids, at approximately +0.5 V vs. ferrocene0/+ that were transferred from methanol/water into acetonitrile/water via solid phase extraction, was carried out in microcentrifuge tubes. Linear calibration curves for voltammetry measurements were obtained from low ppm up to at least 1400 ppm of capsaicinoids, with concentrations being detected in the different source extracts (paprika, tabasco sauce, cayenne pepper, and fresh chillies) from approximately 17 to 430 ppm, which corresponded to values of between approximately 130 and 4000 ppm, respectively, present in the original samples.
Collapse
Affiliation(s)
- Kwok Kiong Chan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Muhammad Shafique Bin Hamid
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|
10
|
Zabik NL, Virca CN, McCormick TM, Martic-Milne S. Selective Electrochemical versus Chemical Oxidation of Bulky Phenol. J Phys Chem B 2016; 120:8914-24. [PMID: 27454828 DOI: 10.1021/acs.jpcb.6b06135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical oxidation of selected tert-butylated phenols 2,6-di-tert-butyl-4-methylphenol (1), 2,6-di-tert-butylphenol (2), 2,4,6-tri-tert-butylphenol (3), 2-tert-butylphenol (4), and 4-tert-butylphenol (5) was studied in an aprotic environment using cyclic voltammetry, square-wave voltammetry, and UV-vis spectroscopy. All compounds exhibited irreversible oxidation of the corresponding phenol or phenolate ion. Compound 2 was selectively electrochemically oxidized, while other phenol analogues underwent mostly chemical oxidation. The electrochemical oxidation of 2 produced a highly absorbing product, 3,5,3',5'-tetra-tert-butyl-4,4'-diphenoquinone, which was characterized by X-ray crystal diffraction. The electrochemical oxidation was monitored as a function of electrochemical parameters and concentration. Experimental and theoretical data indicated that the steric hindrance, phenoxyl radical stability, and hydrogen bonding influenced the outcome of the electrochemical oxidation. The absence of the substituent at the para position and the presence of the bulky substituents at ortho positions were structural and electrostatic requirements for the selective electrochemical oxidation.
Collapse
Affiliation(s)
- Nicole L Zabik
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Carolyn N Virca
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Theresa M McCormick
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Sanela Martic-Milne
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
11
|
Yue Y, Novianti ML, Tessensohn ME, Hirao H, Webster RD. Optimizing the lifetimes of phenoxonium cations derived from vitamin E via structural modifications. Org Biomol Chem 2015; 13:11732-9. [PMID: 26480893 DOI: 10.1039/c5ob01868d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic synthesis of a number of new phenolic compounds with structures similar to vitamin E led to the identification of several sterically hindered compounds that when electrochemically oxidised in acetonitrile in a -2e(-)/-H(+) process formed phenoxonium diamagnetic cations that were resistant to hydrolysis reactions. The reactivity of the phenoxonium ions was ascertained by performing cyclic voltammetric scans during the addition of carefully controlled quantities of water into acetonitrile solutions, with the data modelled using digital simulation techniques.
Collapse
Affiliation(s)
- Yanni Yue
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | | | | | |
Collapse
|
12
|
Lee JH, Tay BK, Ganguly R, Webster RD. The Electrochemical Oxidation of Sesamol in Acetonitrile Containing Variable Amounts of Water. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Lee JHQ, Yue Y, Ganguly R, Webster RD. Electrochemical Study of Pyridoxine (Vitamin B6) in Acetonitrile. ChemElectroChem 2014. [DOI: 10.1002/celc.201402340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Chan YY, Yue Y, Li Y, Webster RD. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Tan YS, Yue Y, Webster RD. Competing Hydrogen-Bonding, Decomposition, and Reversible Dimerization Mechanisms during the One- and Two-Electron Electrochemical Reduction of Retinal (Vitamin A). J Phys Chem B 2013; 117:9371-9. [DOI: 10.1021/jp4051808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Shan Tan
- Division
of Chemistry and Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yanni Yue
- Division
of Chemistry and Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Richard D. Webster
- Division
of Chemistry and Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
16
|
Kondo T, Sakai K, Watanabe T, Einaga Y, Yuasa M. Electrochemical detection of lipophilic antioxidants with high sensitivity at boron-doped diamond electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Borrero NV, Aponick A. Total Synthesis of Acortatarin A Using a Pd(II)-Catalyzed Spiroketalization Strategy. J Org Chem 2012; 77:8410-6. [DOI: 10.1021/jo301835e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nicholas V. Borrero
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Ziyatdinova G, Khuzina A, Budnikov H. Determination of Sterically Hindered Phenols and α-Tocopherol by Cyclic Voltammetry. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.677788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Webster RD. Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents. CHEM REC 2011; 12:188-200. [DOI: 10.1002/tcr.201100005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Indexed: 12/31/2022]
|
20
|
Ziyatdinova G, Morozov M, Budnikov H. MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1581-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|