1
|
Janicki MJ, Szabla R, Šponer J, Góra RW. Photoinduced water-chromophore electron transfer causes formation of guanosine photodamage. Phys Chem Chem Phys 2022; 24:8217-8224. [PMID: 35319053 DOI: 10.1039/d2cp00801g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-induced photolysis of aqueous guanine nucleosides produces 8-oxo-guanine and Fapy-guanine, which can induce various types of cellular malfunction. The mechanistic rationale underlying photodestructive processes of guanine nucleosides is still largely obscure. Here, we employ accurate quantum chemical calculations and demonstrate that an excited-state non-bonding interaction of guanosine and a water molecule facilitates the electron-driven proton transfer process from water to the chromophore fragment. This subsequently allows for the formation of a crucial intermediate, namely guanosine photohydrate. Further (photo)chemical reactions of this intermediate lead to the known products of guanine photodamage.
Collapse
Affiliation(s)
- Mikołaj J Janicki
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Rafał Szabla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Robert W Góra
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Solling TI. Nonstatistical Photoinduced Processes in Gaseous Organic Molecules. ACS OMEGA 2021; 6:29325-29344. [PMID: 34778606 PMCID: PMC8581993 DOI: 10.1021/acsomega.1c04035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/26/2023]
Abstract
Processes that proceed in femtoseconds are usually referred to as being ultrafast, and they are investigated in experiments that involve laser pulses with femtosecond duration in so-called pump probe schemes, where a light pulse triggers a molecular process and a second light pulse interrogates the temporal evolution of the molecular population. The focus of this review is on the reactivity patterns that arise when energy is not equally distributed on all the available degrees of freedom as a consequence of the very short time scale in play and on how the localization of internal energy in a specific mode can be thought of as directing a process toward (or away from) a certain outcome. The nonstatistical aspects are illustrated with examples from photophysics and photochemistry for a range of organic molecules. The processes are initiated by a variety of nuclear motions that are all governed by the energy gradients in the Franck-Condon region. Essentially, the molecules will start to adapt to the new electronic environment on the excited state to eventually reach the equilibrium structure. It is this structural change that is enabling an ultrafast electronic transition in cases where the nuclear motion leads to a transition point with significant coupling between to electronic states and to ultrafast reaction if there is a coupling to a reactive mode at the transition point between the involved states. With the knowledge of the relation between electronic excitation and equilibrium structure, it is possible to predict how the nuclei move after excitation and often whether an ultrafast (and inherently nonstatistical) electronic transition or even a bond breakage will take place. In addition to the understanding of how nonstatistical photoinduced processes proceed from a given excited state, it has been found that randomization of the energy does not even always take place when the molecule takes part in processes that are normally considered statistical, such as for example nonradiative transitions between excited states. This means that energy can be localized in a specific degree of freedom on a state other than the one that is initially prepared. This is a finding that could kickoff the ultimate dream in applied photochemistry; namely light excitation that leads to the rupture of a specific bond.
Collapse
Affiliation(s)
- Theis I. Solling
- Center for Integrative Petroleum
Research, King Fahd University of Petroleum
& Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Duchi M, O'Hagan MP, Kumar R, Bennie SJ, Galan MC, Curchod BFE, Oliver TAA. Exploring ultraviolet photoinduced charge-transfer dynamics in a model dinucleotide of guanine and thymine. Phys Chem Chem Phys 2019; 21:14407-14417. [PMID: 30869082 DOI: 10.1039/c8cp07864e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An understanding of the initial photoexcited states of DNA is essential to unravelling deleterious photoinduced chemical reactions and the intrinsic ultrafast photoprotection of the genetic code for all life. In our combined experimental and theoretical study, we have elucidated the primary non-radiative relaxation dynamics of a model nucleotide of guanine and thymine (2'-deoxyguanosine 3'-monophosphate 5'-thymidine, d(GpT)) in buffered aqueous solution. Experimentally, we unequivocally demonstrate that the Franck-Condon excited states of d(GpT) are significantly delocalised across both nucleobases, and mediate d(G+pT-) exciplex product formation on an ultrafast (<350 fs) timescale. Theoretical studies show that the nature of the vertical excited states is very dependent on the specific geometry of the dinucleotide, and dictate the degree of delocalised, charge-transfer or localised character. Our mechanism for prompt exciplex formation involves a rapid change in electronic structure and includes a diabatic surface crossing very close to the Franck-Condon region mediating fast d(G+pT-) formation. Exciplexes are quickly converted back to neutral ground state molecules on a ∼10 ps timescale with a high quantum yield, ensuring the photostability of the nucleotide sequence.
Collapse
Affiliation(s)
- Marta Duchi
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Michael P O'Hagan
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Rhea Kumar
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Simon J Bennie
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - M Carmen Galan
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thomas A A Oliver
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
4
|
Mondal S, Puranik M. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation. Phys Chem Chem Phys 2017; 18:13874-87. [PMID: 27146198 DOI: 10.1039/c6cp01746k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first solvation shell within an ultrafast timescale of less than 30 fs following photoexcitation.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
5
|
Mondal S, Puranik M. Ultrafast Nuclear Dynamics of Photoexcited Guanosine-5'-Monophosphate in Three Singlet States. J Phys Chem B 2017; 121:7095-7107. [PMID: 28653848 DOI: 10.1021/acs.jpcb.7b05735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report measurement of resonance Raman (RR) spectra of guanosine-5'-monophosphate (GMP), a DNA nucleotide at excitation wavelengths throughout its ππ* absorption band (Bb) in the 210-230 nm range. From these data, we constructed wavelength-dependent Raman intensity excitation profiles (REPs) for all observed modes. These profiles and the absorption spectrum were then modeled using self-consistent simulations based on the time-dependent wave packet propagation formalism. We inferred the initial structural dynamics of GMP immediately after photoexcitation in terms of dimensionless displacements. The simulations also provide linewidth-broadening parameters that in turn report on the time scale of dynamics. We compared deduced structural changes in the purine ring upon photoabsorption into the Bb state with those deduced for the two lowest lying ππ* (La and Lb at 280 and 248 nm, respectively) excited states of GMP. We find that excitation to the Lb state lengthens C6-N1 and C2═N3 bonds, which lie along the formation coordinate of various oxidative adducts but Bb excitation does not. We also find that photoabsorption by the Bb state weakens the C8-N9 bond and thus might assist imidazole ring opening via cleavage of the same bond. Electronic excitation to different ππ* states of the guanine chromophore results in contrasting structural changes; although absorption by the La and Lb states induces expansion of pyrimidine and contraction of imidazole rings, excitation results in overall shrinkage of both the rings. Computed absolute changes in internal coordinates imply that photoexcitation to any of the three singlet states of GMP does not lead directly to the formation of a cation radical of guanine.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research , Pune 411008, India
| |
Collapse
|
6
|
Lee J, Challa JR, McCamant DW. Ultraviolet Light Makes dGMP Floppy: Femtosecond Stimulated Raman Spectroscopy of 2'-Deoxyguanosine 5'-Monophosphate. J Phys Chem B 2017; 121:4722-4732. [PMID: 28412810 DOI: 10.1021/acs.jpcb.7b01694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast dynamics of 2'-deoxyguanosine 5'-monophosphate after excitation with ultraviolet light has been studied with femtosecond transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS). TA kinetics and transient anisotropy spectra reveal a rapid relaxation from the Franck-Condon region, producing an extremely red-shifted stimulated emission band at ∼440 nm that is formed after 200 fs and subsequent relaxation for 0.8-1.5 ps, consistent with prior studies. Viscosity dependence shows that the initial relaxation, before 0.5 ps, is the same in water or viscous glycerol/water mixtures, but after 0.5 ps the dynamics significantly slow down in a viscous solution. This indicates that large amplitude structural changes occur after 0.5 ps following photoexcitation. FSRS obtained with both 480 and 600 nm Raman pump pulses observe very broad Raman peaks at 509 and 1530 cm-1, as well as a narrower peak at 1179 cm-1. All of the Raman peaks decay with 0.7-1.3 ps time constants. The 1530 cm-1 peak also shows an increasing inhomogeneous linewidth over the first 0.3 ps. Our TA and FSRS data are consistent with a structurally inhomogeneous population in the S1 (La) state and, in particular, with previous theoretical models in which out-of-plane distortion at C2 and the amine move the molecule toward a conical intersection with the ground state. These FSRS data are the first to directly observe the structural inhomogeneity imparted upon the excited-state population by the broad, flat potential energy surface of the S1 (La) state.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - J Reddy Challa
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - David W McCamant
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|
7
|
|
8
|
Oliver TAA, Zhang Y, Roy A, Ashfold MNR, Bradforth SE. Exploring Autoionization and Photoinduced Proton-Coupled Electron Transfer Pathways of Phenol in Aqueous Solution. J Phys Chem Lett 2015; 6:4159-4164. [PMID: 26722792 DOI: 10.1021/acs.jpclett.5b01861] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The excited state dynamics of phenol in water have been investigated using transient absorption spectroscopy. Solvated electrons and vibrationally cold phenoxyl radicals are observed upon 200 and 267 nm excitation, but with formation time scales that differ by more than 4 orders of magnitude. The impact of these findings is assessed in terms of the relative importance of autoionization versus proton-coupled electron transfer mechanisms in this computationally tractable model system.
Collapse
Affiliation(s)
- Thomas A A Oliver
- School of Chemistry, University of Bristol , Bristol, BS8 1TS, United Kingdom
| | - Yuyuan Zhang
- University of Southern California , Los Angeles, California 90089, United States
| | - Anirban Roy
- University of Southern California , Los Angeles, California 90089, United States
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol , Bristol, BS8 1TS, United Kingdom
| | - Stephen E Bradforth
- University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Carbonniere P, Pouchan C, Improta R. Intramolecular vibrational redistribution in the non-radiative excited state decay of uracil in the gas phase: an ab initio molecular dynamics study. Phys Chem Chem Phys 2015; 17:11615-26. [PMID: 25866850 DOI: 10.1039/c4cp05265j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a study of intramolecular vibrational distribution (IVR) occurring in the electronic ground state of uracil (S0) in the gas phase, following photoexcitation in the lowest energy bright excited state (Sπ) and decay through the ethylene-like Sπ/S0 Conical Intersection (CI-0π). To this aim we have performed 20 independent ab initio molecular dynamics simulations starting from CI-0π (ten of them with 1 eV kinetic energy randomly distributed over the different molecular degrees of freedom) and 10 starting from the ground state minimum (Franck-Condon, FC, point), with the excess kinetic energy equal to the energy gap between CI-0π and the FC point. The simulations, exploiting PBE0/6-31G(d) calculations, were performed over an overall period of 10 ps. A thorough statistical analysis of the variation of the geometrical parameters of uracil during the simulation time and of the distribution of the kinetic energy among the different vibrational degrees of freedom provides a consistent picture of the IVR process. In the first 0-200 fs the structural dynamics involve mainly the recovery of the average planarity. In the 200-600 fs time range, a substantial activation of CO and NH degrees of freedom is observed. After 500-600 fs most of the geometrical parameters reach average values similar to those found after 10 ps, though the system cannot be considered to be in equilibrium yet.
Collapse
Affiliation(s)
- Philippe Carbonniere
- Université de Pau et des Pays de l'Adour UMR5254, IPREM, Equipe Chimie-Physique Hélioparc, 2 av. Président Angot 64053, Pau Cedex 09, France.
| | | | | |
Collapse
|
10
|
Vibrational relaxation of NO3−(aq). Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhang Y, Improta R, Kohler B. Mode-specific vibrational relaxation of photoexcited guanosine 5'-monophosphate and its acid form: a femtosecond broadband mid-IR transient absorption and theoretical study. Phys Chem Chem Phys 2014; 16:1487-99. [PMID: 24302276 DOI: 10.1039/c3cp53815j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-pump/broadband-mid-IR-probe transient absorption (TA) experiments and ab initio quantum mechanical (QM) calculations were used to investigate the photophysics in heavy water of the neutral and acid forms of guanosine 5'-monophosphate (GMP and GMPD(+), respectively). Excited GMP undergoes ultrafast internal conversion (IC) and returns to the electronic ground state in less than one picosecond with a large amount of excess vibrational energy. The spectroscopic signals are dominated by vibrational cooling - a process in which the solute dissipates vibrational energy to the solvent. For neutral GMP, cooling proceeds with a time constant of 3 ps. Following IC, at least some medium-frequency modes such as the carbonyl stretch and an in-plane ring vibration are excited, suggesting that the vibrational energy distribution is non-statistical. This is consistent with predicted structural changes upon passage through the S1/S0 conical intersection. GMPD(+) differs from GMP by a single deuteron at the N7 position, but has a dramatically longer lifetime of 200 ps. Vibrational cooling of the S1 state of GMPD(+) was monitored via several medium-frequency modes that were assigned using QM calculations. These medium-frequency modes are also vibrationally excited in a non-statistical fashion. Excitation of these modes is in line with the change in geometry at the S1 minimum of GMPD(+) predicted by QM calculations. Furthermore, these modes relax at different rates, fully consistent with QM calculations, which predict that excited vibrational states of the carbonyl stretch couple strongly to the D2O solvent and thus deactivate via intermolecular energy transfer (IET). In contrast, the ring stretch couples strongly to other ring modes of the guanine chromophore and appears to decay via intramolecular vibrational energy redistribution (IVR).
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, USA.
| | | | | |
Collapse
|
12
|
Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution. Top Curr Chem (Cham) 2014; 355:245-327. [DOI: 10.1007/128_2014_554] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Zhang Y, Dood J, Beckstead A, Chen J, Li XB, Burrows CJ, Lu Z, Matsika S, Kohler B. Ultrafast excited-state dynamics and vibrational cooling of 8-oxo-7,8-dihydro-2'-deoxyguanosine in D2O. J Phys Chem A 2013; 117:12851-7. [PMID: 24215180 DOI: 10.1021/jp4095529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nguyen and Burrows recently demonstrated that UV-B irradiation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a signature product of oxidatively damaged DNA, can repair cyclobutane pyrimidine dimers in double-stranded DNA (J. Am. Chem. Soc. 2011, 133, 14586 - 14589). In order to test the hypothesis that repair occurs by photoinduced electron transfer, it is critical to determine basic photophysical parameters of 8-oxodG including the excited-state lifetime. Here, femtosecond transient absorption spectroscopy was used to study the ultrafast excited-state dynamics of 8-oxodG with excitation in the UV and probing at visible and mid-IR wavelengths. The excited-state lifetimes of both neutral and basic forms of 8-oxodG in D2O are reported for the first time by monitoring the disappearance of excited-state absorption at 570 nm. The lifetime of the first excited state of the neutral form is 0.9 ± 0.1 ps, or nearly twice as long as that of 2'-deoxyguanosine. The basic form of 8-oxodG exhibits a much longer excited-state lifetime of 43 ± 3 ps. Following ultrafast internal conversion by neutral 8-oxodG, a vibrationally hot ground state is created that dissipates its excess vibrational energy to the solvent on a time scale of 2.4 ± 0.4 ps. Femtosecond time-resolved IR experiments provide additional insights into excited-state dynamics and the vibrational relaxation of several modes in the fingerprint region.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Chen J, Kohler B. Hydrogen Bond Donors Accelerate Vibrational Cooling of Hot Purine Derivatives in Heavy Water. J Phys Chem A 2013; 117:6771-80. [DOI: 10.1021/jp4040002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuyuan Zhang
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| | - Jinquan Chen
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| | - Bern Kohler
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| |
Collapse
|
15
|
|
16
|
Nielsen JB, Thøgersen J, Jensen SK, Keiding SR. Photo protection of RNA building blocks: Adenosine 5′-monophosphate, cytidine 5′-monophosphate and cytosine. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Singh S, Srivastava SK, Donfack P, Schlücker S, Materny A, Asthana BP. Molecular interactions of 2'-deoxyguanosine 5'-monophosphate with glycine in aqueous media probed via concentration and pH dependent Raman spectroscopic investigations and DFT study. Phys Chem Chem Phys 2013; 14:14315-24. [PMID: 23008833 DOI: 10.1039/c2cp41205e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to gain insights into nucleotide-protein interaction, the molecular interaction of glycine (Gly) with 2'-deoxyguanosine 5'-monophosphate (dGMP) was monitored in aqueous media through Raman spectroscopic measurements and density functional theory (DFT) calculations. Raman spectra of dGMP, glycine and their binary mixtures (dGMP + Gly) in aqueous media at 10 different concentrations corresponding to the dGMP : Gly molar ratios varying from 1 : 1 to 1 : 10 were recorded in the fingerprint region 2000-400 cm(-1). Raman spectra of the dGMP : Gly mixture with a molar ratio of 1 : 3 in aqueous media at 10 different pH values starting from 1 to 10 at an interval of 1 were also recorded. The DFT calculations were performed on dGMP, glycine and their various complexes with varying number of H(2)O molecules in gas phase as well as in solvation using hybrid functional B3LYP employing the high level basis set 6-311+G(d,p). The variations in the observed spectral features were explained in terms of calculated optimized structures of dGMP, glycine and their various complexes with water molecules and a good spectra-structure correlation was obtained. Raman spectra of glycine in 1.2 M aqueous solution were also recorded at three pH values, 2, 6 and 10, and the subtle differences in the spectral features were correlated with the calculated Raman spectra of protonated, deprotonated and zwitterionic forms of glycine. The results also give experimental evidence rather convincingly that the zwitterionic and protonated forms of glycine are formed at pH = 6 and 2, respectively, but even at pH = 10, deprotonated glycine is not formed. An important aspect of this study is the monitoring of the interaction of dGMP with the zwitterionic form of glycine giving insightful details regarding the binding site.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Physics, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
18
|
Weber JM, Marcum J, Nielsen SB. UV Photophysics of DNA and RNA Nucleotides In Vacuo: Dissociation Channels, Time Scales, and Electronic Spectra. PHOTOPHYSICS OF IONIC BIOCHROMOPHORES 2013. [DOI: 10.1007/978-3-642-40190-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|