1
|
Card M, Alejandro R, Roxbury D. Decoupling Individual Optical Nanosensor Responses Using a Spin-Coated Hydrogel Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1772-1783. [PMID: 36548478 DOI: 10.1021/acsami.2c16596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant advances have been made in fields such as nanotechnology and biomedicine using the unique properties of single-walled carbon nanotubes (SWCNTs). Specifically, SWCNTs are used as near-infrared fluorescence sensors in the solution phase to detect a wide array of biologically relevant analytes. However, solution-based sensing has several limitations, including limited sensitivity and poor spatial resolution. We have therefore devised a new spin-coated poly(ethylene glycol) diacrylate (PEG-DA) hydrogel platform to examine individual DNA-functionalized SWCNTs (DNA-SWCNTs) in their native aqueous state and have subsequently used this platform to investigate the temporal modulations of each SWCNT in response to a model analyte. A strong surfactant, sodium deoxycholate (SDC), was chosen as the model analyte as it rapidly exchanges with DNA oligonucleotides on the SWCNT surface, modulating several optical properties of the SWCNTs and demonstrating multiparameter analyte detection. Upon addition of SDC, we observed time-dependent spectral modulations in the emission center wavelengths and peak intensities of the individual SWCNTs, indicative of a DNA-to-surfactant exchange process. Interestingly, we found that the modulations in the peak intensities, as determined by kinetic data, were significantly delayed when compared to their center wavelength counterparts, suggesting a potential decoupling of the response of these two spectral features. We used a 1-D diffusion model to relate the local SDC concentration to the spectral response of each SWCNT and created dose-response curves. The peak intensity shifts at a higher SDC concentration than the center wavelength, indicating a potential change in the conformation of the surfactant molecules adsorbed to the SWCNT sidewall after the initial exchange process. This platform allows for a unique single-molecule analysis technique that is significantly more sensitive and modifiable than utilizing SWCNTs in the solution phase.
Collapse
Affiliation(s)
- Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Raisa Alejandro
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| |
Collapse
|
2
|
Pabois O, Ziolek RM, Lorenz CD, Prévost S, Mahmoudi N, Skoda MWA, Welbourn RJL, Valero M, Harvey RD, Grundy MML, Wilde PJ, Grillo I, Gerelli Y, Dreiss CA. Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. J Colloid Interface Sci 2020; 587:522-537. [PMID: 33189321 DOI: 10.1016/j.jcis.2020.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
Abstract
HYPOTHESES Bile salts (BS) are biosurfactants released into the small intestine, which play key and contrasting roles in lipid digestion: they adsorb at interfaces and promote the adsorption of digestive enzymes onto fat droplets, while they also remove lipolysis products from that interface, solubilising them into mixed micelles. Small architectural variations on their chemical structure, specifically their bile acid moiety, are hypothesised to underlie these conflicting functionalities, which should be reflected in different aggregation and solubilisation behaviour. EXPERIMENTS The micellisation of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ by one hydroxyl group on the bile acid moiety, was assessed by pyrene fluorescence spectroscopy, and the morphology of aggregates formed in the absence and presence of fatty acids (FA) and monoacylglycerols (MAG) - typical lipolysis products - was resolved by small-angle X-ray/neutron scattering (SAXS, SANS) and molecular dynamics simulations. The solubilisation by BS of triacylglycerol-incorporating liposomes - mimicking ingested lipids - was studied by neutron reflectometry and SANS. FINDINGS Our results demonstrate that BS micelles exhibit an ellipsoidal shape. NaTDC displays a lower critical micellar concentration and forms larger and more spherical aggregates than NaTC. Similar observations were made for BS micelles mixed with FA and MAG. Structural studies with liposomes show that the addition of BS induces their solubilisation into mixed micelles, with NaTDC displaying a higher solubilising capacity.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Robert M Ziolek
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | | | - Najet Mahmoudi
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Rebecca J L Welbourn
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, Salamanca 37007, Spain.
| | - Richard D Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria.
| | | | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble 38000, France; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
3
|
Lazzari F, Alexander BD, Dalgliesh RM, Alongi J, Ranucci E, Ferruti P, Griffiths PC. pH-Dependent Chiral Recognition of D- and L-Arginine Derived Polyamidoamino Acids by Self-assembled Sodium Deoxycholate. Polymers (Basel) 2020; 12:E900. [PMID: 32295002 PMCID: PMC7240376 DOI: 10.3390/polym12040900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/27/2023] Open
Abstract
D- and L-arginine-based polyamidoamino acids, called D- and L-ARGO7, retain the chirality and acid/base properties of the parent -amino acids and show pH-dependent self-structuring in water. The ability of the ARGO7 chiral isomers to selectively interact with chiral biomolecules and/or surfaces was studied by choosing sodium deoxycholate (NaDC) as a model chiral biomolecule for its ability to self-assembly into globular micelles, showing enantio-selectivity. To this purpose, mixtures of NaDC with D-, L- or D,L-ARGO7, respectively, in water were analysed by circular dichroism (CD) spectroscopy and small-angle neutron scattering (SANS) at different levels of acidity expressed in terms of pD and concentrations. Differences in the CD spectra indicated chiral discrimination for NaDC/ARGO7 mixtures in the gel phase (pD 7.30) but not in the solution phase (pD 9.06). SANS measurements confirmed large scale structural perturbation induced by this chiral discrimination in the gel phase yet no modulation of the structure in the solution phase. Together, these techniques shed light on the mechanism by which ARGO7 stereoisomers modify the morphology of NaDC micelles as a function of pH. This work demonstrates chirality-dependent interactions that drive structural evolution and phase behaviour of NaDC, opening the way for designing novel smart drug delivery systems.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (J.A.); (E.R.)
| | - Bruce D. Alexander
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK;
| | - Robert M. Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK;
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (J.A.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (J.A.); (E.R.)
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (J.A.); (E.R.)
| | - Peter C. Griffiths
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK;
| |
Collapse
|
4
|
Meier AR, Yehl JB, Eckenroad KW, Manley GA, Strein TG, Rovnyak D. Stepwise Aggregation of Cholate and Deoxycholate Dictates the Formation and Loss of Surface-Available Chirally Selective Binding Sites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6489-6501. [PMID: 29733655 DOI: 10.1021/acs.langmuir.8b00467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bile salts are facially amphiphilic, naturally occurring chemicals that aggregate to perform numerous biochemical processes. Because of their unique intermolecular properties, bile salts have also been employed as functional materials in medicine and separation science (e.g., drug delivery, chiral solubilization, purification of single-walled carbon nanotubes). Bile micelle formation is structurally complex, and it remains a topic of considerable study. Here, the exposed functionalities on the surface of cholate and deoxycholate micelles are shown to vary from one another and with the micelle aggregation state. Collectively, data from NMR and capillary electrophoresis reveal preliminary, primary, and secondary stepwise aggregation of the salts of cholic (CA) and deoxycholic (DC) acid in basic conditions (pH 12, 298 K), and address how the surface availability of chirally selective binding sites is dependent on these sequential stages of aggregation. Prior work has demonstrated sequential CA aggregation (pH 12, 298 K) including a preliminary CMC at ca. 7 mM (no chiral selection), followed by a primary CMC at ca. 14 mM that allows chiral selection of binaphthyl enantiomers. In this work, DC is also shown to form stepwise preliminary and primary aggregates (ca. 3 mM DC and 9 mM DC, respectively, pH 12, 298 K) but the preliminary 3 mM DC aggregate is capable of chirally selective solubilization of the binaphthyl enantiomers. Higher-order, secondary bile aggregates of each of CA and DC show significantly degraded chiral selectivity. Diffusion NMR reveals that secondary micelles of CA exclude the BNDHP guests, while secondary micelles of DC accommodate guests, but with a loss of chiral selectivity. These data lead to the hypothesis that secondary aggregates of DC have an exposed binding site, possibly the 7α-edge of a bile dimeric unit, while secondary CA micelles do not present binding edges to the solution, potentially instead exposing the three alcohol groups on the hydrophilic α-face to the solution.
Collapse
Affiliation(s)
- Adam R Meier
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| | - Jenna B Yehl
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| | - Kyle W Eckenroad
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| | - Gregory A Manley
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| | - Timothy G Strein
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| | - David Rovnyak
- Department of Chemistry , Bucknell University , 1 Dent Drive , Lewisburg , Pennsylvania 17837 , United States
| |
Collapse
|
5
|
Vila Verde A, Frenkel D. Kinetics of formation of bile salt micelles from coarse-grained Langevin dynamics simulations. SOFT MATTER 2016; 12:5172-5179. [PMID: 27199094 DOI: 10.1039/c6sm00763e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We examine the mechanism of formation of micelles of dihydroxy bile salts using a coarse-grained, implicit solvent model and Langevin dynamics simulations. We find that bile salt micelles primarily form via addition and removal of monomers, similarly to surfactants with typical head-tail molecular structures, and not via a two-stage mechanism - involving formation of oligomers and their subsequent aggregation to form larger micelles - originally proposed for bile salts. The free energy barrier to removal of single bile monomers from micelles is ≈2kBT, much less than what has been observed for head-tail surfactants. Such a low barrier may be biologically relevant: it allows for rapid release of bile monomers into the intestine, possibly enabling the coverage of fat droplets by bile salt monomers and subsequent release of micelles containing fats and bile salts - a mechanism that is not possible for ionic head-tail surfactants of similar critical micellar concentrations.
Collapse
Affiliation(s)
- Ana Vila Verde
- Theory and Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, 14424 Potsdam, Germany.
| | | |
Collapse
|
6
|
Glanzer S, Pulido SA, Tutz S, Wagner GE, Kriechbaum M, Gubensäk N, Trifunovic J, Dorn M, Fabian WMF, Novak P, Reidl J, Zangger K. Structural and functional implications of the interaction between macrolide antibiotics and bile acids. Chemistry 2015; 21:4350-8. [PMID: 25655041 PMCID: PMC4471570 DOI: 10.1002/chem.201406413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 01/13/2023]
Abstract
Macrolide antibiotics, such as azithromycin and erythromycin, are in widespread use for the treatment of bacterial infections. Macrolides are taken up and excreted mainly by bile. Additionally, they have been implicated in biliary system diseases and to modify the excretion of other drugs through bile. Despite mounting evidence for the interplay between macrolide antibiotics and bile acids, the molecular details of this interaction remain unknown. Herein, we show by NMR measurements that macrolides directly bind to bile acid micelles. The topology of this interaction has been determined by solvent paramagnetic relaxation enhancements (solvent PREs). The macrolides were found to be bound close to the surface of the micelle. Increasing hydrophobicity of both the macrolide and the bile acid strengthen this interaction. Both bile acid and macrolide molecules show similar solvent PREs across their whole structures, indicating that there are no preferred orientations of them in the bile micelle aggregates. The binding to bile aggregates does not impede macrolide antibiotics from targeting bacteria. In fact, the toxicity of azithromycin towards enterotoxic E. coli (ETEC) is even slightly increased in the presence of bile, as was shown by effective concentration (EC50 ) values.
Collapse
Affiliation(s)
| | | | - Sarah Tutz
- Institute of Molecular BiosciencesUniversity of Graz (Austria)
| | | | | | | | - Jovana Trifunovic
- Dept. of Pharmacology, Medical FacultyUniversity of Novi Sad (Serbia)
| | - Markus Dorn
- Institute of NavigationGraz University of Technology (Austria)
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Natural ScienceUniversity of Zagreb (Croatia)
| | - Joachim Reidl
- Institute of Molecular BiosciencesUniversity of Graz (Austria)
| | | |
Collapse
|
7
|
Diffusion Properties of the Ternary System Human Serum Albumin–Sodium Cholate–Water. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Mangiapia G, Paduano L, Ortona O, Sartorio R, D'Errico G. Analysis of main- and cross-term diffusion coefficients in bile salt mixtures. J Phys Chem B 2013; 117:741-9. [PMID: 23276326 DOI: 10.1021/jp309945f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutual diffusion coefficients have been measured for several average compositions of the system sodium cholate-sodium deoxycholate-water at 25 °C. The experiments have been grouped in different sets having constant concentration of one component and variable concentration of the other one. Following this approach, it has been found that the trends of the main- and cross-term diffusion coefficients can be interpreted on the basis of the diffusion and equilibrium results of similar experiments performed on the two binary systems sodium cholate-water and sodium deoxycholate-water. Implications of the presented results in the transport of lipids operated by bile salt aggregates are mentioned. The method proposed in this work, able to connect the diffusivities of an n-component system to those of the related n-1 subsystems, can be extended to obtain qualitative prediction on the diffusion coefficient trends for mixtures of other surfactants, of both industrial and biological interest.
Collapse
Affiliation(s)
- Gaetano Mangiapia
- Department of Chemical Sciences, University of Naples Federico II and CSGI Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Complesso di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy
| | | | | | | | | |
Collapse
|