1
|
Hayashi T, Matsuda T, Nagata T, Katahira M, Kinoshita M. Mechanism of protein-RNA recognition: analysis based on the statistical mechanics of hydration. Phys Chem Chem Phys 2019; 20:9167-9180. [PMID: 29560998 DOI: 10.1039/c8cp00155c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigate the RBD1-r(GUAGU) binding as a case study using all-atom models for the biomolecules, molecular models for water, and the currently most reliable statistical-mechanical method. RBD1 is one of the RNA-binding domains of mammalian Musashi1 (Msi1), and r(GUAGU) contains the minimum recognition sequence for Msi1, r(GUAG). We show that the binding is driven by a large gain of configurational entropy of water in the entire system. It is larger than the sum of conformational-entropy losses for RBD1 and r(GUAGU). The decrease in RBD1-r(GUAGU) interaction energy upon binding is largely cancelled out by the increase in the sum of RBD1-water, r(GUAGU)-water, and water-water interaction energies. We refer to this increase as "energetic dehydration". The decrease is larger than the increase for the van der Waals component, whereas the opposite is true for the electrostatic component. We give a novel reason for the empirically known fact that protein residues possessing side chains with positive charges and with flat moieties frequently appear within protein-RNA binding interfaces. A physical picture of the general protein-RNA binding mechanism is then presented. To achieve a sufficiently large water-entropy gain, shape complementarity at the atomic level needs to be constructed by utilizing the stacking and sandwiching of flat moieties (aromatic rings of the protein and nucleobases of RNA) as fundamental motifs. To compensate for electrostatic energetic dehydration, charge complementarity becomes crucial within the binding interface. We argue the reason why the RNA recognition motif (RRM) is the most ubiquitous RNA binding domain.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tomoaki Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
2
|
Oshima H, Hayashi T, Kinoshita M. Statistical Thermodynamics for Actin-Myosin Binding: The Crucial Importance of Hydration Effects. Biophys J 2017; 110:2496-2506. [PMID: 27276267 DOI: 10.1016/j.bpj.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
Actomyosin is an important molecular motor, and the binding of actin and myosin is an essential research target in biophysics. Nevertheless, the physical factors driving or opposing the binding are still unclear. Here, we investigate the role of water in actin-myosin binding using the most reliable statistical-mechanical method currently available for assessing biomolecules immersed in water. This method is characterized as follows: water is treated not as a dielectric continuum but as an ensemble of molecules; the polyatomic structures of proteins are taken into consideration; and the binding free energy is decomposed into physically insightful entropic and energetic components by accounting for the hydration effect to its full extent. We find that the actin-myosin binding brings large gains of electrostatic and Lennard-Jones attractive interactions. However, these gains are accompanied by even larger losses of actin-water and myosin-water electrostatic and LJ attractive interactions. Although roughly half of the energy increase due to the losses is cancelled out by the energy decrease arising from structural reorganization of the water released upon binding, the remaining energy increase is still larger than the energy decrease brought by the gains mentioned above. Hence, the net change in system energy is positive, which opposes binding. Importantly, the binding is driven by a large gain of configurational entropy of water, which surpasses the positive change in system energy and the conformational entropy loss occurring for actin and myosin. The principal physical origin of the large water-entropy gain is as follows: the actin-myosin interface is closely packed with the achievement of high shape complementarity on the atomic level, leading to a large increase in the total volume available to the translational displacement of water molecules in the system and a resultant reduction of water crowding (i.e., entropic correlations among water molecules).
Collapse
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | | |
Collapse
|
3
|
Melo R, Fieldhouse R, Melo A, Correia JDG, Cordeiro MNDS, Gümüş ZH, Costa J, Bonvin AMJJ, Moreira IS. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Int J Mol Sci 2016; 17:E1215. [PMID: 27472327 PMCID: PMC5000613 DOI: 10.3390/ijms17081215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.
Collapse
Affiliation(s)
- Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - Robert Fieldhouse
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - André Melo
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Maria Natália D S Cordeiro
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joaquim Costa
- CMUP/FCUP, Centro de Matemática da Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| | - Irina S Moreira
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| |
Collapse
|
4
|
Hayashi T, Oshima H, Yasuda S, Kinoshita M. Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure Formation: For the Tumor Suppressor p53 Protein as an Example. J Phys Chem B 2015; 119:14120-9. [PMID: 26421917 DOI: 10.1021/acs.jpcb.5b08513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The new type of molecular recognition, in which an intrinsically disordered region (IDR) of a protein binds to many different target proteins with target-dependent structure formation, is indispensable to the expression of life phenomena and also implicated in a number of diseases. According to the prevailing view, the physicochemical factors responsible for the binding are also target dependent. Here we consider an IDR of the tumor suppressor p53 protein, p53CTD, as an important example related to carcinogenesis and analyze its binding to four targets accompanying the formation of target-dependent structures (i.e., helix, sheet, and two different coils) using our statistical-mechanical method combined with molecular models for water. We find that all of the seemingly different binding processes are driven by a large gain of the translational, configurational entropy of water in the system. The gain originates from sufficiently high shape complementarity on the atomic level within the p53CTD-target interface. It is also required that the electrostatic complementarity be ensured as much as possible to compensate for the dehydration. Such complementarities are achieved in harmony with the portion of the target to which p53CTD binds, leading to a large diversity of structures of p53CTD formed upon binding: If they are not achievable, the binding does not occur. This finding is made possible only by calculating the changes in thermodynamic quantities upon binding and decomposing them into physically insightful components.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Hiraku Oshima
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Satoshi Yasuda
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Murakami S, Oshima H, Hayashi T, Kinoshita M. On the physics of thermal-stability changes upon mutations of a protein. J Chem Phys 2015; 143:125102. [DOI: 10.1063/1.4931814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shota Murakami
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Franck JM, Ding Y, Stone K, Qin PZ, Han S. Anomalously Rapid Hydration Water Diffusion Dynamics Near DNA Surfaces. J Am Chem Soc 2015; 137:12013-23. [PMID: 26256693 PMCID: PMC4656248 DOI: 10.1021/jacs.5b05813] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emerging Overhauser effect dynamic nuclear polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 Å) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of the surface hydration water network. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface.
Collapse
Affiliation(s)
- John M. Franck
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY
| | - Yuan Ding
- Department of Chemistry, University of Southern California, Los Angeles, CA
| | - Katherine Stone
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
- Pacira Pharmaceuticals, Inc, San Diego, CA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| |
Collapse
|
7
|
Hayashi T, Chiba S, Kaneta Y, Furuta T, Sakurai M. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force. J Phys Chem B 2014; 118:12612-20. [PMID: 25302667 DOI: 10.1021/jp507930e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
8
|
Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res 2014; 42:6861-75. [PMID: 24803670 PMCID: PMC4066790 DOI: 10.1093/nar/gku382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12–P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12–P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12–water and P16–water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Martin DR, Fioretto D, Matyushov DV. Depolarized light scattering and dielectric response of a peptide dissolved in water. J Chem Phys 2014; 140:035101. [DOI: 10.1063/1.4861965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Ahmed MH, Habtemariam M, Safo MK, Scarsdale JN, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE. Unintended consequences? Water molecules at biological and crystallographic protein–protein interfaces. Comput Biol Chem 2013; 47:126-41. [DOI: 10.1016/j.compbiolchem.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/31/2023]
|
11
|
Mishima H, Oshima H, Yasuda S, Amano KI, Kinoshita M. On the physics of multidrug efflux through a biomolecular complex. J Chem Phys 2013; 139:205102. [DOI: 10.1063/1.4832896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
May A, Pool R, van Dijk E, Bijlard J, Abeln S, Heringa J, Feenstra KA. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins. ACTA ACUST UNITED AC 2013; 30:326-34. [PMID: 24273239 DOI: 10.1093/bioinformatics/btt675] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full atomistic molecular simulation methods do have this potential, but are completely unfeasible for large-scale applications in terms of computational cost required. Here we investigate whether applying coarse-grained (CG) molecular dynamics simulations is a viable alternative for complexes of known structure. RESULTS We calculate the free energy barrier with respect to the bound state based on molecular dynamics simulations using both a full atomistic and a CG force field for the TCR-pMHC complex and the MP1-p14 scaffolding complex. We find that the free energy barriers from the CG simulations are of similar accuracy as those from the full atomistic ones, while achieving a speedup of >500-fold. We also observe that extensive sampling is extremely important to obtain accurate free energy barriers, which is only within reach for the CG models. Finally, we show that the CG model preserves biological relevance of the interactions: (i) we observe a strong correlation between evolutionary likelihood of mutations and the impact on the free energy barrier with respect to the bound state; and (ii) we confirm the dominant role of the interface core in these interactions. Therefore, our results suggest that CG molecular simulations can realistically be used for the accurate prediction of protein-protein interaction strength. AVAILABILITY AND IMPLEMENTATION The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.
Collapse
Affiliation(s)
- Ali May
- Centre for Integrative Bioinformatics (IBIVU), VU University Amsterdam, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), VU University Amsterdam, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Netherlands Bioinformatics Centre (NBIC), Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands and Department of Biological Psychology, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Yasuda S, Oshima H, Kinoshita M. Structural stability of proteins in aqueous and nonpolar environments. J Chem Phys 2013; 137:135103. [PMID: 23039615 DOI: 10.1063/1.4755755] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A protein folds into its native structure with the α-helix and∕or β-sheet in aqueous solution under the physiological condition. The relative content of these secondary structures largely varies from protein to protein. However, such structural variability is not exhibited in nonaqueous environment. For example, there is a strong trend that alcohol induces a protein to form α-helices, and many of the membrane proteins within the lipid bilayer consists of α-helices. Here we investigate the structural stability of proteins in aqueous and nonpolar environments using our recently developed free-energy function F = (Λ - TS)∕(k(B)T(0)) = Λ∕(k(B)T(0)) - S∕k(B) (T(0) = 298 K and the absolute temperature T is set at T(0)) which is based on statistical thermodynamics. Λ∕(k(B)T(0)) and S∕k(B) are the energetic and entropic components, respectively, and k(B) is Boltzmann's constant. A smaller value of the positive quantity, -S, represents higher efficiency of the backbone and side-chain packing promoted by the entropic effect arising from the translational displacement of solvent molecules or the CH(2), CH(3), and CH groups which constitute nonpolar chains of lipid molecules. As for Λ, in aqueous solution, a transition to a more compact structure of a protein accompanies the break of protein-solvent hydrogen bonds: As the number of donors and acceptors buried without protein intramolecular hydrogen bonding increases, Λ becomes higher. In nonpolar solvent, lower Λ simply implies more intramolecular hydrogen bonds formed. We find the following. The α-helix and β-sheet are advantageous with respect to -S as well as Λ and to be formed as much as possible. In aqueous solution, the solvent-entropy effect on the structural stability is so strong that the close packing of side chains is dominantly important, and the α-helix and β-sheet contents are judiciously adjusted to accomplish it. In nonpolar solvent, the solvent-entropy effect is substantially weaker than in aqueous solution. Λ is crucial and the α-helix is more stable than the β-sheet in terms of Λ, which develops a tendency that α-helices are exclusively chosen. For a membrane protein, α-helices are stabilized as fundamental structural units for the same reason, but their arrangement is performed through the entropic effect mentioned above.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
15
|
Kinoshita M. A new theoretical approach to biological self-assembly. Biophys Rev 2013; 5:283-293. [PMID: 28510109 DOI: 10.1007/s12551-013-0100-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022] Open
Abstract
Upon biological self-assembly, the number of accessible translational configurations of water in the system increases considerably, leading to a large gain in water entropy. It is important to calculate the solvation entropy of a biomolecule with a prescribed structure by accounting for the change in water-water correlations caused by solute insertion. Modeling water as a dielectric continuum is not capable of capturing the physical essence of the water entropy effect. As a reliable tool, we propose a hybrid of the angle-dependent integral equation theory combined with a multipolar water model and a morphometric approach. Using our methods wherein the water entropy effect is treated as the key factor, we can elucidate a variety of processes such as protein folding, cold, pressure, and heat denaturating of a protein, molecular recognition, ordered association of proteins such as amyloid fibril formation, and functioning of ATP-driven proteins.
Collapse
Affiliation(s)
- Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
16
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wojdyla JA, Fleishman SJ, Baker D, Kleanthous C. Structure of the ultra-high-affinity colicin E2 DNase--Im2 complex. J Mol Biol 2012; 417:79-94. [PMID: 22306467 DOI: 10.1016/j.jmb.2012.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)∼10(-)(15) M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.
Collapse
|