1
|
A further look at the Li+HCl→LiCl+H reaction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Zhang T, Mu G, Zhang S, Hou J. Formation pathways of polycyclic aromatic hydrocarbons (PAHs) in butane or butadiene flames. RSC Adv 2021; 11:5629-5642. [PMID: 35423086 PMCID: PMC8694769 DOI: 10.1039/d0ra08744k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
The reaction pathways from phenyl radicals to phenanthrene (A3) and pyrene (A4) via C2H3 and C4H4 additions were investigated using the G3(MP2, CC) method. Rate constants of elementary reactions were calculated. The influence of additions, H-abstraction ways and reactive sites on the reaction rates were considered. These polycyclic aromatic hydrocarbon (PAH) formation pathways were used to improve the combustion chemistry model for C4 fuels, and the results from the improved model and the original model were compared with experimental data. H atoms are important for PAH formation owing to their influential roles in the production of aromatic radicals and stable aromatic structures. C2H3 and C4H4 addition reactions can occur at low temperature, and need less energy than C2H2 addition. The PAH formation pathways determined from G3 calculations, which were used to improve the model, were effective in promoting PAH formations in this model. Comparison of PAH formation in butane and butadiene flames showed both the C2H3 and C4H4 addition pathways included in this work can improve the formation of PAHs in butadiene and butane flames. C4H4 addition pathways in a butane flame were better for PAH formation than C2H3 addition. The reaction pathways from phenyl radicals to phenanthrene (A3) and pyrene (A4) via C2H3 and C4H4 additions were investigated using the G3(MP2, CC) method.![]()
Collapse
Affiliation(s)
- Tingting Zhang
- School of Mechanical and Electrical Engineering, Shandong Agricultural University Taian 271018 P. R. China
| | - Guizhi Mu
- School of Mechanical and Electrical Engineering, Shandong Agricultural University Taian 271018 P. R. China
| | - Shourong Zhang
- Department of Traffic Engineering, Shandong Transport Vocational College Taian 271000 P. R. China
| | - Jialin Hou
- School of Mechanical and Electrical Engineering, Shandong Agricultural University Taian 271018 P. R. China
| |
Collapse
|
3
|
Middaugh JE, Buras ZJ, Matrat M, Chu TC, Kim YS, Alecu IM, Vasiliou AK, Goldsmith CF, Green WH. A combined photoionization time-of-flight mass spectrometry and laser absorption spectrometry flash photolysis apparatus for simultaneous determination of reaction rates and product branching. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:074102. [PMID: 30068092 DOI: 10.1063/1.5024399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
In recent years, predictions of product branching for reactions of consequence to both combustion and atmospheric chemistry have outpaced validating experiments. An apparatus is described that aims to fill this void by combining several well-known experimental techniques into one: flash photolysis for radical generation, multiple-pass laser absorption spectrometry (LAS) for overall kinetics measurements, and time-resolved photoionization time-of-flight mass spectrometry (PI TOF-MS) for product branching quantification. The sensitivity of both the LAS and PI TOF-MS detection techniques is shown to be suitable for experiments with initial photolytically generated radical concentrations of ∼1 × 1012 molecules cm-3. As it is fast (μs time resolution) and non-intrusive, LAS is preferred for accurate kinetics (time-dependence) measurements. By contrast, PI TOF-MS is preferred for product quantification because it provides a near-complete picture of the reactor composition in a single mass spectrum. The value of simultaneous LAS and PI TOF-MS detection is demonstrated for the chemically interesting phenyl radical + propene system.
Collapse
Affiliation(s)
- Joshua E Middaugh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zachary J Buras
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mickael Matrat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Te-Chun Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Young-Seok Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ionut M Alecu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - AnGayle K Vasiliou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Franklin Goldsmith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Bright CC, Prendergast MB, Kelly PD, Bezzina JP, Blanksby SJ, da Silva G, Trevitt AJ. Highly efficient gas-phase reactivity of protonated pyridine radicals with propene. Phys Chem Chem Phys 2018; 19:31072-31084. [PMID: 29152628 DOI: 10.1039/c7cp06644a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small nitrogen containing heteroaromatics are fundamental building blocks for many biological molecules, including the DNA nucleotides. Pyridine, as a prototypical N-heteroaromatic, has been implicated in the chemical evolution of many extraterrestrial environments, including the atmosphere of Titan. This paper reports on the gas-phase ion-molecule reactions of the three dehydro-N-pyridinium radical cation isomers with propene. Photodissociation ion-trap mass spectrometry experiments are used to measure product branching ratios and reaction kinetics. Reaction efficiencies for 2-dehydro-N-pyridinium, 3-dehydro-N-pyridinium and 4-dehydro-N-pyridinium with propene are 70%, 47% and 41%, respectively. The m/z 106 channel is the major product channel across all cases and assigned 2-, 3-, and 4-vinylpyridinium for each reaction. The m/z 93 channel is also significant and assigned the 2-, 3-, and 4-N-protonated-picolyl radical cation for each case. H-Abstraction from propene is not competitive under experimental conditions. Potential energy schemes, at the M06-2X/6-31(2df,p) level of theory and basis set, are described to assist in rationalising observed product branching ratios and elucidating possible reaction mechanisms. Reaction barriers to the production of vinylpyridinium (m/z 106) + CH3 are the lowest identified for the 3- and 4-dehydro-N-pyridinium reactions, in support of the observed dominance of the m/z 106 ion signal. Ethylene loss via ring-mediated H-transfer along the propyl group is found to be the lowest energy pathway for the 2-dehydro-N-pyridinium reaction, suggesting a preference toward m/z 93 (N-protonated-picolyl radical cation) over the experimentally observed products. Entropic bottle-necks along the m/z 93 pathway however, associated with ring-mediated H-atom transfer, are responsible for the dominance of m/z 106 in the 2-dehydro-N-pyridinium + propene reaction. For all three isomers, computed barriers for all observed reaction channels were below the entrance channel, suggesting these reactions can contribute to molecular weight growth in extraterrestrial environments with accelerated reaction rates in low temperature regions of space.
Collapse
Affiliation(s)
- Cameron C Bright
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Wei M, Zhang T, Chen X, Yan F, Guo G, Zhang D. Formation of bicyclic polycyclic aromatic hydrocarbons (PAHs) from the reaction of a phenyl radical with cis-3-penten-1-yne. RSC Adv 2018; 8:13226-13236. [PMID: 35542549 PMCID: PMC9079691 DOI: 10.1039/c8ra01449c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022] Open
Abstract
The formation of PAHs within 4-, 5-, 6- and 7-membered rings on the C6H5 + C5H6 potential energy surface.
Collapse
Affiliation(s)
- Mingrui Wei
- Hubei Key Laboratory of Advanced Technology for Automotive Components
- Hubei Collaborative Innovation Center for Automotive Components Technology
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Tingting Zhang
- Hubei Key Laboratory of Advanced Technology for Automotive Components
- Hubei Collaborative Innovation Center for Automotive Components Technology
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Xianfeng Chen
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Fuwu Yan
- Hubei Key Laboratory of Advanced Technology for Automotive Components
- Hubei Collaborative Innovation Center for Automotive Components Technology
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components
- Hubei Collaborative Innovation Center for Automotive Components Technology
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250000
| |
Collapse
|
6
|
Buras ZJ, Chu TC, Jamal A, Yee NW, Middaugh JE, Green WH. Phenyl radical + propene: a prototypical reaction surface for aromatic-catalyzed 1,2-hydrogen-migration and subsequent resonance-stabilized radical formation. Phys Chem Chem Phys 2018; 20:13191-13214. [DOI: 10.1039/c8cp01159a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H-Shifts in the alkyl chain catalyzed by an aromatic ring (green pathway).
Collapse
Affiliation(s)
- Zachary J. Buras
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Te-Chun Chu
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Adeel Jamal
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Nathan W. Yee
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Joshua E. Middaugh
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - William H. Green
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
7
|
Mebel AM, Landera A, Kaiser RI. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. J Phys Chem A 2017; 121:901-926. [DOI: 10.1021/acs.jpca.6b09735] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Mebel
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander Landera
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ralf I. Kaiser
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
8
|
Pan H, Liu K, Caracciolo A, Casavecchia P. Crossed beam polyatomic reaction dynamics: recent advances and new insights. Chem Soc Rev 2017; 46:7517-7547. [DOI: 10.1039/c7cs00601b] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the developments in polyatomic reaction dynamics, focusing on reactions of unsaturated hydrocarbons with O-atoms and methane with atoms/radicals.
Collapse
Affiliation(s)
- Huilin Pan
- Institute of Atomic and Molecular Sciences (IAMS)
- Academia Sinica
- Taipei
- Taiwan
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS)
- Academia Sinica
- Taipei
- Taiwan
- Department of Physics
| | - Adriana Caracciolo
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
- Italy
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
9
|
Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discuss 2016; 195:637-670. [DOI: 10.1039/c6fd00111d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allene and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.
Collapse
Affiliation(s)
- Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | - Ahren W. Jasper
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | | |
Collapse
|
10
|
Kaiser RI, Parker DS, Mebel AM. Reaction Dynamics in Astrochemistry: Low-Temperature Pathways to Polycyclic Aromatic Hydrocarbons in the Interstellar Medium. Annu Rev Phys Chem 2015; 66:43-67. [DOI: 10.1146/annurev-physchem-040214-121502] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Dorian S.N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199
| |
Collapse
|
11
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Mebel AM. Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions. Phys Chem Chem Phys 2015; 17:10510-9. [DOI: 10.1039/c4cp04288c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flux contour map for the reactions of the p-tolyl radical with allene-d4 and methylacetylene-d4 at collision energies of around 48 kJ mol−1.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Beni B. Dangi
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
12
|
Parker DSN, Kaiser RI, Kostko O, Troy TP, Ahmed M, Sun BJ, Chen SH, Chang AHH. On the formation of pyridine in the interstellar medium. Phys Chem Chem Phys 2015; 17:32000-8. [DOI: 10.1039/c5cp02960k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nitrogen bearing aromatic molecule pyridine (C5H5N) is revealed to form in high temperature environments simulating conditions in carbon-rich circumstellar envelopes via the reaction of the cyano vinyl radical with vinyl cyanide.
Collapse
Affiliation(s)
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Tyler P. Troy
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Bing-Jian Sun
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| | - Shih-Hua Chen
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| | - A. H. H. Chang
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| |
Collapse
|
13
|
Kaiser RI, Dangi BB, Yang T, Parker DSN, Mebel AM. Reaction dynamics of the 4-methylphenyl radical (p-tolyl) with 1,2-butadiene (1-methylallene): are methyl groups purely spectators? J Phys Chem A 2014; 118:6181-90. [PMID: 25084134 DOI: 10.1021/jp505868q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of the 4-tolyl radical (C6H4CH3) and of the D7-4-tolyl radical (C6D4CD3) with 1,2-butadiene (C4H6) have been probed in crossed molecular beams under single collision conditions at a collision energy of about 54 kJ mol(-1) and studied theoretically using ab initio G3(MP2,CC)//B3LYP/6-311G** and statistical RRKM calculations. The results show that the reaction proceeds via indirect scattering dynamics through the formation of a van-der-Waals complex followed by the addition of the radical center of the 4-tolyl radical to the C1 or C3 carbon atoms of 1,2-butadiene. The collision complexes then isomerize by migration of the tolyl group from the C1 (C3) to the C2 carbon atom of the 1,2-butadiene moiety. The resulting intermediate undergoes unimolecular decomposition via elimination of a hydrogen atom from the methyl group of the 1,2-butadiene moiety through a rather loose exit transition state leading to 2-para-tolyl-1,3-butadiene (p4), which likely presents the major reaction product. Our observation combined with theoretical calculations suggest that one methyl group (at the phenyl group) acts as a spectator in the reaction, whereas the other one (at the allene moiety) is actively engaged in the underlying chemical dynamics. On the contrary to the reaction of the phenyl radical with allene, which leads to the formation of indene, the substitution of a hydrogen atom by a methyl group in allene essentially eliminates the formation of bicyclic PAHs such as substituted indenes in the 4-tolyl plus 1,2-butadiene reaction.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | | | | | | | | |
Collapse
|
14
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Kislov VV, Mebel AM. Crossed Beam Reactions of the Phenyl (C6H5; X2A1) and Phenyl-d5 Radical (C6D5; X2A1) with 1,2-Butadiene (H2CCCHCH3; X1A′). J Phys Chem A 2014; 118:4372-81. [DOI: 10.1021/jp411642w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Beni B. Dangi
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Vadim V. Kislov
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
15
|
Albert DR, Todt MA, Davis HF. Crossed Molecular Beams Studies of Phenyl Radical Reactions with Propene and trans-2-Butene. J Phys Chem A 2013; 117:13967-75. [DOI: 10.1021/jp407986n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel R. Albert
- Department of Chemistry and
Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Michael A. Todt
- Department of Chemistry and
Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - H. Floyd Davis
- Department of Chemistry and
Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
16
|
Albert DR, Davis HF. Studies of bimolecular reaction dynamics using pulsed high-intensity vacuum-ultraviolet lasers for photoionization detection. Phys Chem Chem Phys 2013; 15:14566-80. [DOI: 10.1039/c3cp51930a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Golan A, Ahmed M, Mebel AM, Kaiser RI. A VUV photoionization study of the multichannel reaction of phenyl radicals with 1,3-butadiene under combustion relevant conditions. Phys Chem Chem Phys 2012; 15:341-7. [PMID: 23165625 DOI: 10.1039/c2cp42848b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the reaction of phenyl radicals (C(6)H(5)) with 1,3-butadiene (H(2)CCHCHCH(2)) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 873 K). The reaction products were probed in a supersonic beam by utilizing VUV radiation from the Advanced Light Source and by recording the experimental PIE curves at mass-to-charge ratios of m/z = 130 (C(10)H(10)(+)), 116 (C(9)H(8)(+)), and 104 (C(8)H(8)(+)). Our data suggest that the atomic hydrogen (H), methyl (CH(3)), and vinyl (C(2)H(3)) losses are open with estimated branching ratios of about 86 ± 4%, 8 ± 2%, and 6 ± 2%, respectively. The isomer distributions were probed further by fitting the experimentally recorded PIE curves with a linear combination of the PIE curves of individual C(10)H(10), C(9)H(8), and C(8)H(8) isomers. These fits indicate the formation of three C(10)H(10) isomers (trans-1,3-butadienylbenzene, 1,4-dihydronaphthalene, 1-methylindene), three C(9)H(8) isomers (indene, phenylallene, 1-phenyl-1-methylacetylene), and a C(8)H(8) isomer (styrene). A comparison with results from recent crossed molecular beam studies of the 1,3-butadiene-phenyl radical reaction and electronic structure calculations suggests that trans-1,3-butadienylbenzene (130 amu), 1,4-dihydronaphthalene (130 amu), and styrene (104 amu) are reaction products formed as a consequence of a bimolecular reaction between the phenyl radical and 1,3-butadiene. 1-Methylindene (130 amu), indene (116 amu), phenylallene (116 amu), and 1-phenyl-1-methylacetylene (116 amu) are synthesized upon reaction of the phenyl radical with three C(4)H(6) isomers: 1,2-butadiene (H(2)CCCH(CH(3))), 1-butyne (HCCC(2)H(5)), and 2-butyne (CH(3)CCCH(3)); these C(4)H(6) isomers can be formed from 1,3-butadiene via hydrogen atom assisted isomerization reactions or via thermal rearrangements of 1,3-butadiene involving hydrogen shifts in the high temperature chemical reactor.
Collapse
Affiliation(s)
- Amir Golan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
18
|
Kaiser RI, Parker DSN, Zhang F, Landera A, Kislov VV, Mebel AM. PAH Formation under Single Collision Conditions: Reaction of Phenyl Radical and 1,3-Butadiene to Form 1,4-Dihydronaphthalene. J Phys Chem A 2012; 116:4248-58. [DOI: 10.1021/jp301775z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- R. I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - D. S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - F. Zhang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - A. Landera
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - V. V. Kislov
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - A. M. Mebel
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
19
|
Kislov VV, Mebel AM, Aguilera-Iparraguirre J, Green WH. Reaction of Phenyl Radical with Propylene as a Possible Source of Indene and Other Polycyclic Aromatic Hydrocarbons: An Ab Initio/RRKM-ME Study. J Phys Chem A 2012; 116:4176-91. [DOI: 10.1021/jp212338g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. V. Kislov
- Department of Chemistry and Biochemistry, Florida International University, Miami,
Florida 33199, United States
| | - A. M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami,
Florida 33199, United States
| | - J. Aguilera-Iparraguirre
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - W. H. Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
20
|
Zhang F, Kaiser RI, Golan A, Ahmed M, Hansen N. A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor. J Phys Chem A 2012; 116:3541-6. [DOI: 10.1021/jp300875s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fangtong Zhang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822,
United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822,
United States
| | - Amir Golan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Nils Hansen
- Combustion
Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
21
|
Kaiser RI, Mebel AM. On the formation of polyacetylenes and cyanopolyacetylenes in Titan's atmosphere and their role in astrobiology. Chem Soc Rev 2012; 41:5490-501. [DOI: 10.1039/c2cs35068h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|